- 相關(guān)推薦
初中數學(xué)反比例函數知識點(diǎn)總結
反比例函數
反比例函數表達式
y=k/x=k·1/x
xy=k
y=k·x^(-1) (即:y等于x的負一次方,此處x必須為一次方)
y=k/x(k為常數且k≠0,x≠0)
若y=k/nx此時(shí)比例系數為:k/n
自變量的取值范圍
、 在一般的情況下 , 自變量 x 的取值范圍可以是 不等于0的任意實(shí)數;②函數 y 的取值范圍也是任意非零實(shí)數。
解析式 y=k/x 其中x是自變量,y是x的函數,其定義域是不等于0的一切實(shí)數,即 {x|x≠0,x∈R}。下面是一些常見(jiàn)的形式:
y=k/x=k·1/x
xy=k
y=k·x^(-1)
y=kx(k為常數(k≠0),x不等于0)
反比例函數性質(zhì)單調性
當k>0時(shí),圖象分別位于第一、三象限,同一個(gè)象限內,從左往右,y隨x的增大而減小;
當k<0時(shí),圖象分別位于第二、四象限,同一個(gè)象限內,從左往右,y隨x的增大而增大。
k>0時(shí),函數在x<0上同為減函數、在x>0上同為減函數;k<0時(shí),函數在x<0上為增函數、在x>0上同為增函數。
相交性
因為在y=k/x(k≠0)中,x不能為0,y也不能為0,所以反比例函數的圖象不可能與x軸相交,也不可能與y軸相交,只能無(wú)限接近x軸,y軸。
面積
在一個(gè)反比例函數圖象上任取兩點(diǎn)P,Q,過(guò)點(diǎn)P,Q分別作x軸,y軸的平行線(xiàn),與坐標軸圍成的矩形面積為S1,S2則S1=S2=|K|
反比例上一點(diǎn)m向x、y分別做垂線(xiàn),交于q、w,則矩形mwqo(o為原點(diǎn))的面積為|k|
圖像
反比例函數的圖象既是軸對稱(chēng)圖形,又是中心對稱(chēng)圖形,它有兩條對稱(chēng)軸y=x y=-x(即第一三,二四象限角平分線(xiàn)),對稱(chēng)中心是坐標原點(diǎn)。
反比例函數圖像不與x軸和y軸相交。y=k/x的漸近線(xiàn):x軸與y軸。
k值相等的反比例函數重合,k值不相等的反比例函數永不相交。
k|越大,反比例函數的圖象離坐標軸的距離越遠。
對稱(chēng)性
反比例函數圖象是中心對稱(chēng)圖形,對稱(chēng)中心是原點(diǎn);反比例函數的圖像也是軸對稱(chēng)圖形,它的對稱(chēng)軸是x軸和y軸夾角的角平分線(xiàn)。
圖像關(guān)于原點(diǎn)對稱(chēng)。若設正比例函數y=mx與反比例函數y=n/x交于A(yíng)、B兩點(diǎn)(m、n同號),那么A B兩點(diǎn)關(guān)于原點(diǎn)對稱(chēng)。
知識歸納:反比例函數關(guān)于正比例函數y=x,y=-x軸對稱(chēng),并且關(guān)于原點(diǎn)中心對稱(chēng)。
初中數學(xué)知識點(diǎn)總結:平面直角坐標系
下面是對平面直角坐標系的內容學(xué)習,希望同學(xué)們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫(huà)兩條互相垂直、原點(diǎn)重合的數軸,組成平面直角坐標系。
水平的數軸稱(chēng)為x軸或橫軸,豎直的數軸稱(chēng)為y軸或縱軸,兩坐標軸的交點(diǎn)為平面直角坐標系的原點(diǎn)。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點(diǎn)重合
三個(gè)規定:
、僬较虻囊幎M軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L(cháng)度的規定;一般情況,橫軸、縱軸單位長(cháng)度相同;實(shí)際有時(shí)也可不同,但同一數軸上必須相同。
、巯笙薜囊幎ǎ河疑蠟榈谝幌笙、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數學(xué)知識點(diǎn):平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來(lái)學(xué)習哦。
平面直角坐標系的構成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數軸構成平面直角坐標系,簡(jiǎn)稱(chēng)為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱(chēng)為坐標軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標系的原點(diǎn)。
通過(guò)上面對平面直角坐標系的構成知識的講解學(xué)習,希望同學(xué)們對上面的內容都能很好的掌握,同學(xué)們認真學(xué)習吧。
初中數學(xué)知識點(diǎn):點(diǎn)的坐標的性質(zhì)
下面是對數學(xué)中點(diǎn)的坐標的性質(zhì)知識學(xué)習,同學(xué)們認真看看哦。
點(diǎn)的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內的任何一點(diǎn),我們可以確定它的坐標。反過(guò)來(lái),對于任何一個(gè)坐標,我們可以在坐標平面內確定它所表示的一個(gè)點(diǎn)。
對于平面內任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線(xiàn),垂足在X軸、Y軸上的對應點(diǎn)a,b分別叫做點(diǎn)C的橫坐標、縱坐標,有序實(shí)數對(a,b)叫做點(diǎn)C的坐標。
一個(gè)點(diǎn)在不同的象限或坐標軸上,點(diǎn)的坐標不一樣。
希望上面對點(diǎn)的坐標的性質(zhì)知識講解學(xué)習,同學(xué)們都能很好的掌握,相信同學(xué)們會(huì )在考試中取得優(yōu)異成績(jì)的。
初中數學(xué)知識點(diǎn):因式分解的一般步驟
關(guān)于數學(xué)中因式分解的一般步驟內容學(xué)習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒(méi)有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個(gè)整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì )考出好成績(jì)。
初中數學(xué)知識點(diǎn):因式分解
下面是對數學(xué)中因式分解內容的知識講解,希望同學(xué)們認真學(xué)習。
因式分解
因式分解定義:把一個(gè)多項式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項式每項都含有的公共的因式,叫做這個(gè)多項式各項的公因式。
公因式確定方法:①系數是整數時(shí)取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個(gè)多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫(xiě)成積的形式。
分解因式注意;
、俨粶蕘G字母
、诓粶蕘G常數項注意查項數
、垭p重括號化成單括號
、芙Y果按數單字母單項式多項式順序排列
、菹嗤蚴綄(xiě)成冪的形式
、奘醉椮撎柗爬ㄌ柾
、呃ㄌ杻韧(lèi)項合并。
通過(guò)上面對因式分解內容知識的講解學(xué)習,相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內容給同學(xué)們的學(xué)習很好的幫助。
【初中數學(xué)反比例函數知識點(diǎn)總結】相關(guān)文章:
初中數學(xué)所有函數的知識點(diǎn)總結11-22
初中函數知識點(diǎn)總結07-29
初中數學(xué)余切函數公式知識點(diǎn)整理09-19
初中數學(xué)正切函數的公式及其圖像的知識點(diǎn)03-22
反比例函數教學(xué)設計03-07