- 相關(guān)推薦
二次函數與一元二次方程考試知識點(diǎn)
特別地,二次函數(以下稱(chēng)函數)y=ax^2+bx+c,
當y=0時(shí),二次函數為關(guān)于x的一元二次方程(以下稱(chēng)方程),即ax^2+bx+c=0
此時(shí),函數圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數根。函數與x軸交點(diǎn)的橫坐標即為方程的根。
1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標及對稱(chēng)軸如下表:
當h0時(shí),y=a(x-h)^2的圖象可由拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位得到,
當h0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.
當h0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y=a(x-h)^2+k的圖象;
當h0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y=a(x-h)^2+k的圖象;
當h0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y=a(x-h)^2+k的圖象;
當h0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y=a(x-h)^2+k的圖象;
因此,研究拋物線(xiàn)y=ax^2+bx+c(a0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標、對稱(chēng)軸,拋物線(xiàn)的大體位置就很清楚了.這給畫(huà)圖象提供了方便.
2.拋物線(xiàn)y=ax^2+bx+c(a0)的圖象:當a0時(shí),開(kāi)口向上,當a0時(shí)開(kāi)口向下,對稱(chēng)軸是直線(xiàn)x=-b/2a,頂點(diǎn)坐標是(-b/2a,[4ac-b^2]/4a).
3.拋物線(xiàn)y=ax^2+bx+c(a0),若a0,當x-b/2a時(shí),y隨x的增大而減小;當x-b/2a時(shí),y隨x的增大而增大.若a0,當x-b/2a時(shí),y隨x的增大而增大;當x-b/2a時(shí),y隨x的增大而減小.
4.拋物線(xiàn)y=ax^2+bx+c的圖象與坐標軸的交點(diǎn):
(1)圖象與y軸一定相交,交點(diǎn)坐標為(0,c);
(2)當△=b^2-4ac0,圖象與x軸交于兩點(diǎn)A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a0)的兩根.這兩點(diǎn)間的距離AB=|x-x|
當△=0.圖象與x軸只有一個(gè)交點(diǎn);
當△0.圖象與x軸沒(méi)有交點(diǎn).當a0時(shí),圖象落在x軸的上方,x為任何實(shí)數時(shí),都有y當a0時(shí),圖象落在x軸的下方,x為任何實(shí)數時(shí),都有y0.
5.拋物線(xiàn)y=ax^2+bx+c的最值:如果a0),則當x=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.
頂點(diǎn)的橫坐標,是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標,是最值的取值.
【二次函數與一元二次方程考試知識點(diǎn)】相關(guān)文章:
二次函數知識點(diǎn)總結12-19
一元二次方程的概念教學(xué)反思07-06
數學(xué)《一元二次方程》教案設計(通用16篇)11-22
一元二次不等式知識點(diǎn)總結梳理04-26
二次函數的教學(xué)設計04-01
初中函數知識點(diǎn)總結07-29
二次函數復習評課稿03-16
二次函數的教學(xué)設計10篇04-01