- 相關(guān)推薦
二次函數知識點(diǎn)總結
總結是指社會(huì )團體、企業(yè)單位和個(gè)人在自身的某一時(shí)期、某一項目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評價(jià),從而肯定成績(jì),得到經(jīng)驗,找出差距,得出教訓和一些規律性認識的一種書(shū)面材料,它可以給我們下一階段的學(xué)習和工作生活做指導,快快來(lái)寫(xiě)一份總結吧。但是總結有什么要求呢?以下是小編精心整理的二次函數知識點(diǎn)總結,僅供參考,希望能夠幫助到大家。
二次函數知識點(diǎn)總結1
二次函數概念
一般地,把形如y=ax2+bx+c(其中a、b、c是常數,a≠0,b,c可以為0)的函數叫做二次函數,其中a稱(chēng)為二次項系數,b為一次項系數,c為常數項。x為自變量,y為因變量。等號右邊自變量的最高次數是2。二次函數圖像是軸對稱(chēng)圖形。
注意:“變量”不同于“自變量”,不能說(shuō)“二次函數是指變量的最高次數為二次的多項式函數”!拔粗獢怠敝皇且粋(gè)數(具體值未知,但是只取一個(gè)值),“變量”可在實(shí)數范圍內任意取值。在方程中適用“未知數”的概念(函數方程、微分方程中是未知函數,但不論是未知數還是未知函數,一般都表示一個(gè)數或函數——也會(huì )遇到特殊情況),但是函數中的字母表示的是變量,意義已經(jīng)有所不同。從函數的定義也可看出二者的差別,如同函數不等于函數的關(guān)系。
二次函數公式大全
二次函數
I.定義與定義表達式
一般地,自變量x和因變量y之間存在如下關(guān)系:
y=ax2+bx+c(a,b,c為常數,a≠0)
則稱(chēng)y為x的二次函數。
二次函數表達式的.右邊通常為二次三項式。
II.二次函數的三種表達式
一般式:y=ax2;+bx+c(a,b,c為常數,a≠0)
頂點(diǎn)式:y=a(x-h)2;+k [拋物線(xiàn)的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x-x1)(x-x2) [僅限于與x軸有交點(diǎn)A(x1,0)和 B(x2,0)的拋物線(xiàn)]
注:在3種形式的互相轉化中,有如下關(guān)系:
h=-b/2a k=(4ac-b2;)/4a x1,x2=(-b±√b2;-4ac)/2a
III.二次函數的圖象
在平面直角坐標系中作出二次函數y=x??的圖象,
可以看出,二次函數的圖象是一條拋物線(xiàn)。
IV.拋物線(xiàn)的性質(zhì)
1.拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)
x = -b/2a。
對稱(chēng)軸與拋物線(xiàn)唯一的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。
特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)
2.拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標為
P [ -b/2a ,(4ac-b2;)/4a ]。
當-b/2a=0時(shí),P在y軸上;當Δ= b2-4ac=0時(shí),P在x軸上。
3.二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。
當a>0時(shí),拋物線(xiàn)向上開(kāi)口;當a<0時(shí),拋物線(xiàn)向下開(kāi)口。
|a|越大,則拋物線(xiàn)的開(kāi)口越小。
4.一次項系數b和二次項系數a共同決定對稱(chēng)軸的位置。
當a與b同號時(shí)(即ab>0),對稱(chēng)軸在y軸左;
當a與b異號時(shí)(即ab<0),對稱(chēng)軸在y軸右。
5.常數項c決定拋物線(xiàn)與y軸交點(diǎn)。
拋物線(xiàn)與y軸交于(0,c)
6.拋物線(xiàn)與x軸交點(diǎn)個(gè)數
Δ= b2-4ac>0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。
Δ= b2-4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。
Δ= b2-4ac<0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。
V.二次函數與一元二次方程
特別地,二次函數(以下稱(chēng)函數)y=ax2;+bx+c,
當y=0時(shí),二次函數為關(guān)于x的一元二次方程(以下稱(chēng)方程),
即ax2;+bx+c=0
此時(shí),函數圖象與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數根。
函數與x軸交點(diǎn)的橫坐標即為方程的根。
二次函數知識點(diǎn)總結2
教學(xué)目標:
(1)能夠根據實(shí)際問(wèn)題,熟練地列出二次函數關(guān)系式,并求出函數的自變量的取值范圍。
(2)注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認識,培養學(xué)生的良好的學(xué)習習慣
教學(xué)重點(diǎn):能夠根據實(shí)際問(wèn)題,熟練地列出二次函數關(guān)系式,并求出函數的自變量的取值范圍。
教學(xué)難點(diǎn):求出函數的自變量的取值范圍。
教學(xué)過(guò)程:
一、問(wèn)題引新
1.設矩形花圃的垂直于墻(墻長(cháng)18)的一邊AB的長(cháng)為_(kāi)m,先取_的一些值,算出矩形的另一邊BC的長(cháng),進(jìn)而得出矩形的面積ym2.試將計算結果填寫(xiě)在下表的空格中,
AB長(cháng)_(m) 1 2 3 4 5 6 7 8 9
BC長(cháng)(m) 12
面積y(m2) 48
2._的值是否可以任意取?有限定范圍嗎?
3.我們發(fā)現,當AB的長(cháng)(_)確定后,矩形的面積(y)也隨之確定,y是_的函數,試寫(xiě)出這個(gè)函數的關(guān)系式,教師可提出問(wèn)題,(1)當AB=_m時(shí),BC長(cháng)等于多少m?(2)面積y等于多少? y=_(20-2_)
二、提出問(wèn)題,解決問(wèn)題
1、引導學(xué)生看書(shū)第二頁(yè)問(wèn)題一、二
2、觀(guān)察概括
y=6_2 d= n /2 (n-3) y= 20 (1-_)2
以上函數關(guān)系式有什么共同特點(diǎn)? (都是含有二次項)
3、二次函數定義:形如y=a_2+b_+c(a、b、、c是常數,a≠0)的'函數叫做_的二次函數,a叫做二次函數的系數,b叫做一次項的系數,c叫作常數項.
4、課堂練習
(1) (口答)下列函數中,哪些是二次函數?
(1)y=5_+1 (2)y=4_2-1
(3)y=2_3-3_2 (4)y=5_4-3_+1
(2).P3練習第1,2題。
五、小結敘述二次函數的定義.
第二課時(shí):26.1二次函數(2)
教學(xué)目標:
1、使學(xué)生會(huì )用描點(diǎn)法畫(huà)出y=a_2的圖象,理解拋物線(xiàn)的有關(guān)概念。
2、使學(xué)生經(jīng)歷、探索二次函數y=a_2圖象性質(zhì)的過(guò)程,培養學(xué)生觀(guān)察、思考、歸納的良好思維習慣。
教學(xué)重點(diǎn):使學(xué)生理解拋物線(xiàn)的有關(guān)概念,會(huì )用描點(diǎn)法畫(huà)出二次函數y=a_2的圖象
教學(xué)難點(diǎn):用描點(diǎn)法畫(huà)出二次函數y=a_2的圖象以及探索二次函數性質(zhì)。
二次函數知識點(diǎn)總結3
當h>0時(shí),y=a(_-h)^2的圖象可由拋物線(xiàn)y=a_^2向右平行移動(dòng)h個(gè)單位得到,
當h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.
當h>0,k>0時(shí),將拋物線(xiàn)y=a_^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y=a(_-h)^2+k的圖象;
當h>0,k<0時(shí),將拋物線(xiàn)y=a_^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y=a(_-h)^2+k的圖象;
當h<0,k>0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y=a(_-h)^2+k的圖象;
當h<0,k<0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y=a(_-h)^2+k的圖象;
因此,研究拋物線(xiàn)y=a_^2+b_+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(_-h)^2+k的形式,可確定其頂點(diǎn)坐標、對稱(chēng)軸,拋物線(xiàn)的大體位置就很清楚了.這給畫(huà)圖象提供了方便.
2.拋物線(xiàn)y=a_^2+b_+c(a≠0)的圖象:當a>0時(shí),開(kāi)口向上,當a<0時(shí)開(kāi)口向下,對稱(chēng)軸是直線(xiàn)_=-b/2a,頂點(diǎn)坐標是(-b/2a,[4ac-b^2]/4a).
3.拋物線(xiàn)y=a_^2+b_+c(a≠0),若a>0,當_≤-b/2a時(shí),y隨_的增大而減小;當_≥-b/2a時(shí),y隨_的增大而增大.若a<0,當_≤-b/2a時(shí),y隨_的增大而增大;當_≥-b/2a時(shí),y隨_的增大而減小.
4.拋物線(xiàn)y=a_^2+b_+c的'圖象與坐標軸的交點(diǎn):
(1)圖象與y軸一定相交,交點(diǎn)坐標為(0,c);
(2)當△=b^2-4ac>0,圖象與_軸交于兩點(diǎn)A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0
(a≠0)的兩根.這兩點(diǎn)間的距離AB=|_?-_?|
當△=0.圖象與_軸只有一個(gè)交點(diǎn);
當△<0.圖象與_軸沒(méi)有交點(diǎn).當a>0時(shí),圖象落在_軸的上方,_為任何實(shí)數時(shí),都有y>0;當a<0時(shí),圖象落在_軸的下方,_為任何實(shí)數時(shí),都有y<0.
5.拋物線(xiàn)y=a_^2+b_+c的最值:如果a>0(a<0),則當_=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.
頂點(diǎn)的橫坐標,是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標,是最值的取值.
6.用待定系數法求二次函數的解析式
(1)當題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知_、y的三對對應值時(shí),可設解析式為一般形式:
y=a_^2+b_+c(a≠0).
(2)當題給條件為已知圖象的頂點(diǎn)坐標或對稱(chēng)軸時(shí),可設解析式為頂點(diǎn)式:y=a(_-h)^2+k(a≠0).
(3)當題給條件為已知圖象與_軸的兩個(gè)交點(diǎn)坐標時(shí),可設解析式為兩根式:y=a(_-_?)(_-_?)(a≠0).
7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現.
二次函數知識點(diǎn)總結4
I.定義與定義表達式
一般地,自變量_和因變量y之間存在如下關(guān)系:y=a_^2+b_+c
(a,b,c為常數,a≠0,且a決定函數的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)則稱(chēng)y為_(kāi)的二次函數。
二次函數表達式的右邊通常為二次三項式。
II.二次函數的三種表達式
一般式:y=a_^2+b_+c(a,b,c為常數,a≠0)
頂點(diǎn)式:y=a(_-h)^2+k[拋物線(xiàn)的'頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(_-_?)(_-_?)[僅限于與_軸有交點(diǎn)A(_?,0)和B(_?,0)的拋物線(xiàn)]
注:在3種形式的互相轉化中,有如下關(guān)系:
h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a
III.二次函數的圖像
在平面直角坐標系中作出二次函數y=_^2的圖像,可以看出,二次函數的圖像是一條拋物線(xiàn)。
IV.拋物線(xiàn)的性質(zhì)
1.拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)_=-b/2a。
對稱(chēng)軸與拋物線(xiàn)的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)_=0)
2.拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標為:P(-b/2a,(4ac-b^2)/4a)當-b/2a=0時(shí),P在y軸上;當Δ=b^2-4ac=0時(shí),P在_軸上。
3.二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。
當a>0時(shí),拋物線(xiàn)向上開(kāi)口;當a<0時(shí),拋物線(xiàn)向下開(kāi)口。|a|越大,則拋物線(xiàn)的開(kāi)口越小。
4.一次項系數b和二次項系數a共同決定對稱(chēng)軸的位置。
當a與b同號時(shí)(即ab>0),對稱(chēng)軸在y軸左;
當a與b異號時(shí)(即ab<0),對稱(chēng)軸在y軸右。
5.常數項c決定拋物線(xiàn)與y軸交點(diǎn)。
拋物線(xiàn)與y軸交于(0,c)
6.拋物線(xiàn)與_軸交點(diǎn)個(gè)數
Δ=b^2-4ac>0時(shí),拋物線(xiàn)與_軸有2個(gè)交點(diǎn)。
Δ=b^2-4ac=0時(shí),拋物線(xiàn)與_軸有1個(gè)交點(diǎn)。
Δ=b^2-4ac<0時(shí),拋物線(xiàn)與_軸沒(méi)有交點(diǎn)。
_的取值是虛數(_=-b±√b^2-4ac的值的相反數,乘上虛數i,整個(gè)式子除以2a)
V.二次函數與一元二次方程
特別地,二次函數(以下稱(chēng)函數)y=a_^2+b_+c,
當y=0時(shí),二次函數為關(guān)于_的一元二次方程(以下稱(chēng)方程),即a_^2+b_+c=0
此時(shí),函數圖像與_軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數根。函數與_軸交點(diǎn)的橫坐標即為方程的根。
【二次函數知識點(diǎn)總結】相關(guān)文章:
初中函數知識點(diǎn)總結07-29
二次函數的教學(xué)設計04-01
初中數學(xué)所有函數的知識點(diǎn)總結11-22
二次函數復習評課稿03-16
二次函數的教學(xué)設計10篇04-01