- 最新的高二數學(xué)向量知識點(diǎn)總結 推薦度:
- 相關(guān)推薦
高二數學(xué)知識點(diǎn)總結最新
總結是事后對某一時(shí)期、某一項目或某些工作進(jìn)行回顧和分析,從而做出帶有規律性的結論,它是增長(cháng)才干的一種好辦法,為此我們要做好回顧,寫(xiě)好總結。如何把總結做到重點(diǎn)突出呢?下面是小編幫大家整理的高二數學(xué)知識點(diǎn)總結最新,歡迎大家分享。
高二數學(xué)知識點(diǎn)總結最新1
分層抽樣
1、分層抽樣(類(lèi)型抽樣):
先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類(lèi)型或層次,然后再在各個(gè)類(lèi)型或層次中采用簡(jiǎn)單隨機抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來(lái)構成總體的樣本。
兩種方法:
1、先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
2、先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統抽樣的方法抽取樣本。
2、分層抽樣是把異質(zhì)性較強的總體分成一個(gè)個(gè)同質(zhì)性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。
分層標準:
。1)以調查所要分析和研究的主要變量或相關(guān)的變量作為分層的標準。
。2)以保證各層內部同質(zhì)性強、各層之間異質(zhì)性強、突出總體內在結構的變量作為分層變量。
。3)以那些有明顯分層區分的變量作為分層變量。
3、分層的比例問(wèn)題:
。1)按比例分層抽樣:根據各種類(lèi)型或層次中的單位數目占總體單位數目的比重來(lái)抽取子樣本的方法。
。2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會(huì )非常少,此時(shí)采用該方法,主要是便于對不同層次的子總體進(jìn)行專(zhuān)門(mén)研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時(shí),則需要先對各層的數據資料進(jìn)行加權處理,調整樣本中各層的比例,使數據恢復到總體中各層實(shí)際的.比例結構。
用樣本的數字特征估計總體的數字特征
1、本均值:
2、樣本標準差:
3、用樣本估計總體時(shí),如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會(huì )有偏差。在隨機抽樣中,這種偏差是不可避免的。
雖然我們用樣本數據得到的分布、均值和標準差并不是總體的真正的分布、均值和標準差,而只是一個(gè)估計,但這種估計是合理的,特別是當樣本量很大時(shí),它們確實(shí)反映了總體的信息。
4、(1)如果把一組數據中的每一個(gè)數據都加上或減去同一個(gè)共同的常數,標準差不變
。2)如果把一組數據中的每一個(gè)數據乘以一個(gè)共同的常數k,標準差變?yōu)樵瓉?lái)的k倍
。3)一組數據中的值和最小值對標準差的影響,區間的應用;
“去掉一個(gè)分,去掉一個(gè)最低分”中的科學(xué)道理
高二數學(xué)知識點(diǎn)總結最新2
第一章:三角函數?荚嚤乜碱}。誘導公式和基本三角函數圖像的一些性質(zhì)只要記住會(huì )畫(huà)圖就行,難度在于三角函數形函數的振幅、頻率、周期、相位、初相,及根據最值計算A、B的值和周期,及等變化時(shí)圖像及性質(zhì)的變化,這一知識點(diǎn)內容較多,需要多花時(shí)間,首先要記憶,其次要多做題強化練習,只要能踏踏實(shí)實(shí)去做,也不難掌握,畢竟不存在理解上的難度。
第二章:平面向量。個(gè)人覺(jué)得這一章難度較大,這也是我掌握最差的一章。向量的運算性質(zhì)及三角形法則平行四邊形法則難度都不大,只要在計算的時(shí)候記住要同起點(diǎn)的向量。向量共線(xiàn)和垂直的數學(xué)表達,這是計算當中經(jīng)常要用的公式。向量的共線(xiàn)定理、基本定理、數量積公式。難點(diǎn)在于分點(diǎn)坐標公式,首先要準確記憶。向量在考試過(guò)程一般不會(huì )單獨出現,常常是作為解題要用的工具出現,用向量時(shí)要首先找出合適的向量,個(gè)人認為這個(gè)比較難,常常找不對。有同樣情況的同學(xué)建議多看有關(guān)題的`圖形。
第三章:三角恒等變換。這一章公式特別多。和差倍半角公式都是會(huì )用到的公式,所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫(xiě)之后貼在桌子上,天天都要看。而且的三角函數變換都有一定的規律,記憶的時(shí)候可以結合起來(lái)去記。除此之外,就是多練習。要從多練習中找到變換的規律,比如一般都要化等等。這一章也是考試必考,所以一定要重點(diǎn)掌握。
高二數學(xué)知識點(diǎn)總結最新3
兩個(gè)變量的線(xiàn)性相關(guān)
1、概念:
。1)回歸直線(xiàn)方程(2)回歸系數
2。最小二乘法
3。直線(xiàn)回歸方程的應用
。1)描述兩變量之間的依存關(guān)系;利用直線(xiàn)回歸方程即可定量描述兩個(gè)變量間依存的數量關(guān)系
。2)利用回歸方程進(jìn)行預測;把預報因子(即自變量x)代入回歸方程對預報量(即因變量Y)進(jìn)行估計,即可得到個(gè)體Y值的容許區間。
。3)利用回歸方程進(jìn)行統計控制規定Y值的變化,通過(guò)控制x的范圍來(lái)實(shí)現統計控制的目標。如已經(jīng)得到了空氣中NO2的濃度和汽車(chē)流量間的'回歸方程,即可通過(guò)控制汽車(chē)流量來(lái)控制空氣中NO2的濃度。
4。應用直線(xiàn)回歸的注意事項
。1)做回歸分析要有實(shí)際意義;
。2)回歸分析前,先作出散點(diǎn)圖;
。3)回歸直線(xiàn)不要外延。
高二數學(xué)知識點(diǎn)總結最新4
圓的方程
1、圓的定義:平面內到一定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(cháng)為圓的半徑。
2、圓的方程
。1)標準方程,圓心,半徑為r;
。2)一般方程
當時(shí),方程表示圓,此時(shí)圓心為,半徑為
當時(shí),表示一個(gè)點(diǎn);當時(shí),方程不表示任何圖形。
。3)求圓方程的方法:
一般都采用待定系數法:先設后求。確定一個(gè)圓需要三個(gè)獨立條件,若利用圓的標準方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線(xiàn)必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。
3、直線(xiàn)與圓的位置關(guān)系:
直線(xiàn)與圓的位置關(guān)系有相離,相切,相交三種情況:
。1)設直線(xiàn),圓,圓心到l的距離為,則有;
。2)過(guò)圓外一點(diǎn)的`切線(xiàn):①k不存在,驗證是否成立②k存在,設點(diǎn)斜式方程,用圓心到該直線(xiàn)距離=半徑,求解k,得到方程
。3)過(guò)圓上一點(diǎn)的切線(xiàn)方程:圓(x—a)2+(y—b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線(xiàn)方程為(x0—a)(x—a)+(y0—b)(y—b)=r2
4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。
設圓,兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。
當時(shí)兩圓外離,此時(shí)有公切線(xiàn)四條;
當時(shí)兩圓外切,連心線(xiàn)過(guò)切點(diǎn),有外公切線(xiàn)兩條,內公切線(xiàn)一條;
當時(shí)兩圓相交,連心線(xiàn)垂直平分公共弦,有兩條外公切線(xiàn);
當時(shí),兩圓內切,連心線(xiàn)經(jīng)過(guò)切點(diǎn),只有一條公切線(xiàn);
當時(shí),兩圓內含;當時(shí),為同心圓。
注意:已知圓上兩點(diǎn),圓心必在中垂線(xiàn)上;已知兩圓相切,兩圓心與切點(diǎn)共線(xiàn)
圓的輔助線(xiàn)一般為連圓心與切線(xiàn)或者連圓心與弦中點(diǎn)
高二數學(xué)知識點(diǎn)總結最新5
一、直線(xiàn)與圓:
1、直線(xiàn)的傾斜角的范圍是在平面直角坐標系中,對于一條與軸相交的直線(xiàn),如果把軸繞著(zhù)交點(diǎn)按逆時(shí)針?lè )较蜣D到和直線(xiàn)重合時(shí)所轉的最小正角記為,就叫做直線(xiàn)的傾斜角。當直線(xiàn)與軸重合或平行時(shí),規定傾斜角為0;
2、斜率:已知直線(xiàn)的傾斜角為α,且α≠90°,則斜率k=tanα.過(guò)兩點(diǎn)(x1,y1),(x2,y2)的直線(xiàn)的斜率k=(y2-y1)/(x2-x1),另外切線(xiàn)的斜率用求導的方法。
3、直線(xiàn)方程:
。1)點(diǎn)斜式:直線(xiàn)過(guò)點(diǎn)斜率為,則直線(xiàn)方程為
。2)斜截式:直線(xiàn)在軸上的截距為和斜率,則直線(xiàn)方程為
4、直線(xiàn)與直線(xiàn)的位置關(guān)系:
。1)平行A1/A2=B1/B2注意檢驗
。2)垂直A1A2+B1B2=0
5、點(diǎn)到直線(xiàn)的距離公式;
兩條平行線(xiàn)與的'距離是
6、圓的標準方程:圓的一般方程:注意能將標準方程化為一般方程
7、過(guò)圓外一點(diǎn)作圓的切線(xiàn),一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線(xiàn).
8、直線(xiàn)與圓的位置關(guān)系,通常轉化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構造直角三角形解決弦長(cháng)問(wèn)題.①相離②相切③相交
9、解決直線(xiàn)與圓的關(guān)系問(wèn)題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長(cháng)、弦心距構成直角三角形)直線(xiàn)與圓相交所得弦長(cháng)
二、圓錐曲線(xiàn)方程:
1、橢圓:①方程(a>b>0)注意還有一個(gè);②定義:|PF1|+|PF2|=2a>2c;③e=④長(cháng)軸長(cháng)為2a,短軸長(cháng)為2b,焦距為2c;a2=b2+c2;
2、雙曲線(xiàn):①方程(a,b>0)注意還有一個(gè);②定義:||PF1|-|PF2||=2a<2c;③e=;④實(shí)軸長(cháng)為2a,虛軸長(cháng)為2b,焦距為2c;漸進(jìn)線(xiàn)或c2=a2+b2
3、拋物線(xiàn):①方程y2=2px注意還有三個(gè),能區別開(kāi)口方向;②定義:|PF|=d焦點(diǎn)F(,0),準線(xiàn)x=-;③焦半徑;焦點(diǎn)弦=x1+x2+p;
4、直線(xiàn)被圓錐曲線(xiàn)截得的弦長(cháng)公式:
三、直線(xiàn)、平面、簡(jiǎn)單幾何體:
1、學(xué)會(huì )三視圖的分析:
2、斜二測畫(huà)法應注意的地方:
。1)在已知圖形中取互相垂直的軸Ox、Oy。畫(huà)直觀(guān)圖時(shí),把它畫(huà)成對應軸o'x'、o'y'、使∠x(chóng)'o'y'=45°(或135°);
。2)平行于x軸的線(xiàn)段長(cháng)不變,平行于y軸的線(xiàn)段長(cháng)減半.
。3)直觀(guān)圖中的45度原圖中就是90度,直觀(guān)圖中的90度原圖一定不是90度.
3、表(側)面積與體積公式:
。1)柱體:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h
。2)錐體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:
。3)臺體①表面積:S=S側+S上底S下底②側面積:S側=
。4)球體:①表面積:S=;②體積:V=
4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書(shū)寫(xiě)
。1)直線(xiàn)與平面平行:①線(xiàn)線(xiàn)平行線(xiàn)面平行;②面面平行線(xiàn)面平行。
。2)平面與平面平行:①線(xiàn)面平行面面平行。
。3)垂直問(wèn)題:線(xiàn)線(xiàn)垂直線(xiàn)面垂直面面垂直。核心是線(xiàn)面垂直:垂直平面內的兩條相交直線(xiàn)
5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)
。1)異面直線(xiàn)所成角的求法:平移法:平移直線(xiàn),構造三角形;
。2)直線(xiàn)與平面所成的角:直線(xiàn)與射影所成的角
四、導數:導數的意義-導數公式-導數應用(極值最值問(wèn)題、曲線(xiàn)切線(xiàn)問(wèn)題)
1、導數的定義:在點(diǎn)處的導數記作.
2、導數的幾何物理意義:曲線(xiàn)在點(diǎn)處切線(xiàn)的斜率
、賙=f/(x0)表示過(guò)曲線(xiàn)y=f(x)上P(x0,f(x0))切線(xiàn)斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。
3.常見(jiàn)函數的導數公式:①;②;③;
、;⑥;⑦;⑧。
4.、導數的四則運算法則:
5、導數的應用:
。1)利用導數判斷函數的單調性:設函數在某個(gè)區間內可導,如果,那么為增函數;如果,那么為減函數;
注意:如果已知為減函數求字母取值范圍,那么不等式恒成立。
。2)求極值的步驟:
、偾髮;
、谇蠓匠痰母;
、哿斜恚簷z驗在方程根的左右的符號,如果左正右負,那么函數在這個(gè)根處取得極大值;如果左負右正,那么函數在這個(gè)根處取得極小值;
。3)求可導函數值與最小值的步驟:
、∏蟮母;ⅱ把根與區間端點(diǎn)函數值比較,的為值,最小的是最小值。
五、常用邏輯用語(yǔ):
1、四種命題:
、旁}:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p
注:1、原命題與逆否命題等價(jià);逆命題與否命題等價(jià)。判斷命題真假時(shí)注意轉化。
2、注意命題的否定與否命題的區別:命題否定形式是;否命題是.命題“或”的否定是“且”;“且”的否定是“或”.
3、邏輯聯(lián)結詞:
。1)且(and):命題形式pq;pqpqpqp
。2)或(or):命題形式pq;真真真真假
。3)非(not):命題形式p.真假假真假
假真假真真
假假假假真
“或命題”的真假特點(diǎn)是“一真即真,要假全假”;
“且命題”的真假特點(diǎn)是“一假即假,要真全真”;
“非命題”的真假特點(diǎn)是“一真一假”
4、充要條件
由條件可推出結論,條件是結論成立的充分條件;由結論可推出條件,則條件是結論成立的必要條件。
5、全稱(chēng)命題與特稱(chēng)命題:
短語(yǔ)“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱(chēng)量詞,并用符號表示。含有全體量詞的命題,叫做全稱(chēng)命題。
短語(yǔ)“有一個(gè)”或“有些”或“至少有一個(gè)”在陳述中表示所述事物的個(gè)體或部分,邏輯中通常叫做存在量詞,并用符號表示,含有存在量詞的命題,叫做存在性命題。
高二數學(xué)知識點(diǎn)總結最新6
拋物線(xiàn)的性質(zhì):
1、拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)
x=—b/2a。
對稱(chēng)軸與拋物線(xiàn)的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。
特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)
2、拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標為
P(—b/2a,(4ac—b^2)/4a)
當—b/2a=0時(shí),P在y軸上;當Δ=b^2—4ac=0時(shí),P在x軸上。
3、二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。
當a>0時(shí),拋物線(xiàn)向上開(kāi)口;當a<0時(shí),拋物線(xiàn)向下開(kāi)口。
|a|越大,則拋物線(xiàn)的開(kāi)口越小。
4、一次項系數b和二次項系數a共同決定對稱(chēng)軸的位置。
當a與b同號時(shí)(即ab>0),對稱(chēng)軸在y軸左;
當a與b異號時(shí)(即ab<0),對稱(chēng)軸在y軸右。
5、常數項c決定拋物線(xiàn)與y軸交點(diǎn)。
拋物線(xiàn)與y軸交于(0,c)
6、拋物線(xiàn)與x軸交點(diǎn)個(gè)數
Δ=b^2—4ac>0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。
Δ=b^2—4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。
Δ=b^2—4ac<0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。X的取值是虛數(x=—b±√b^2—4ac的值的相反數,乘上虛數i,整個(gè)式子除以2a)
焦半徑:
焦半徑:拋物線(xiàn)y2=2px(p>0)上一點(diǎn)P(x0,y0)到焦點(diǎn)Fè?÷?
p2,0的`距離|PF|=x0+p2。
求拋物線(xiàn)方程的方法:
。1)定義法:根據條件確定動(dòng)點(diǎn)滿(mǎn)足的幾何特征,從而確定p的值,得到拋物線(xiàn)的標準方程。
。2)待定系數法:根據條件設出標準方程,再確定參數p的值,這里要注意拋物線(xiàn)標準方程有四種形式。從簡(jiǎn)單化角度出發(fā),焦點(diǎn)在x軸的,設為y2=ax(a≠0),焦點(diǎn)在y軸的,設為x2=by(b≠0)。
高二數學(xué)知識點(diǎn)總結最新7
1、圓的定義
平面內到一定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(cháng)為圓的'半徑。
2、圓的方程
。▁—a)^2+(y—b)^2=r^2
。1)標準方程,圓心(a,b),半徑為r;
。2)求圓方程的方法:
一般都采用待定系數法:先設后求。確定一個(gè)圓需要三個(gè)獨立條件,若利用圓的標準方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線(xiàn)必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。
3、直線(xiàn)與圓的位置關(guān)系
直線(xiàn)與圓的位置關(guān)系有相離,相切,相交三種情況:
。1)設直線(xiàn),圓,圓心到l的距離為,則有;
。2)過(guò)圓外一點(diǎn)的切線(xiàn):①k不存在,驗證是否成立②k存在,設點(diǎn)斜式方程,用圓心到該直線(xiàn)距離=半徑,求解k,得到方程【一定兩解】
。3)過(guò)圓上一點(diǎn)的切線(xiàn)方程:圓(x—a)2+(y—b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線(xiàn)方程為(x0—a)(x—a)+(y0—b)(y—b)=r2
練習題:
2。若圓(x—a)2+(y—b)2=r2過(guò)原點(diǎn),則()
A。a2—b2=0B。a2+b2=r2
C。a2+b2+r2=0D。a=0,b=0
【解析】選B。因為圓過(guò)原點(diǎn),所以(0,0)滿(mǎn)足方程,即(0—a)2+(0—b)2=r2,所以a2+b2=r2。
高二數學(xué)知識點(diǎn)總結最新8
一、直線(xiàn)與圓:
1、直線(xiàn)的傾斜角的范圍是
在平面直角坐標系中,對于一條與軸相交的直線(xiàn),如果把軸繞著(zhù)交點(diǎn)按逆時(shí)針?lè )较蜣D到和直線(xiàn)重合時(shí)所轉的最小正角記為,就叫做直線(xiàn)的傾斜角。當直線(xiàn)與軸重合或平行時(shí),規定傾斜角為0;
2、斜率:已知直線(xiàn)的傾斜角為α,且α≠90°,則斜率k=tanα。
過(guò)兩點(diǎn)(x1,y1),(x2,y2)的直線(xiàn)的斜率k=(y2-y1)/(x2-x1),另外切線(xiàn)的斜率用求導的方法。
3、直線(xiàn)方程:⑴點(diǎn)斜式:直線(xiàn)過(guò)點(diǎn)斜率為,則直線(xiàn)方程為,
、菩苯厥剑褐本(xiàn)在軸上的截距為和斜率,則直線(xiàn)方程為
4、,①∥,;②。
直線(xiàn)與直線(xiàn)的位置關(guān)系:
。1)平行A1/A2=B1/B2注意檢驗(2)垂直A1A2+B1B2=0
5、點(diǎn)到直線(xiàn)的距離公式;
兩條平行線(xiàn)與的距離是
6、圓的標準方程:。⑵圓的一般方程:
注意能將標準方程化為一般方程
7、過(guò)圓外一點(diǎn)作圓的切線(xiàn),一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線(xiàn)。
8、直線(xiàn)與圓的位置關(guān)系,通常轉化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構造直角三角形解決弦長(cháng)問(wèn)題。①相離②相切③相交
9、解決直線(xiàn)與圓的關(guān)系問(wèn)題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長(cháng)、弦心距構成直角三角形)直線(xiàn)與圓相交所得弦長(cháng)
二、圓錐曲線(xiàn)方程:
1、橢圓:①方程(a>b>0)注意還有一個(gè);②定義:|PF1|+|PF2|=2a>2c;③e=④長(cháng)軸長(cháng)為2a,短軸長(cháng)為2b,焦距為2c;a2=b2+c2;
2、雙曲線(xiàn):①方程(a,b>0)注意還有一個(gè);②定義:||PF1|-|PF2||=2a<2c;③e=;④實(shí)軸長(cháng)為2a,虛軸長(cháng)為2b,焦距為2c;漸進(jìn)線(xiàn)或c2=a2+b2
3、拋物線(xiàn):①方程y2=2px注意還有三個(gè),能區別開(kāi)口方向;②定義:|PF|=d焦點(diǎn)F(,0),準線(xiàn)x=-;③焦半徑;焦點(diǎn)弦=x1+x2+p;
4、直線(xiàn)被圓錐曲線(xiàn)截得的弦長(cháng)公式:
5、注意解析幾何與向量結合問(wèn)題:1、,。(1);(2)。
2、數量積的定義:已知兩個(gè)非零向量a和b,它們的夾角為θ,則數量|a||b|cosθ叫做a與b的數量積,記作a·b,即
3、模的計算:|a|=。算?梢韵人阆蛄康钠椒
4、向量的運算過(guò)程中完全平方公式等照樣適用:
三、直線(xiàn)、平面、簡(jiǎn)單幾何體:
1、學(xué)會(huì )三視圖的分析:
2、斜二測畫(huà)法應注意的地方:
。1)在已知圖形中取互相垂直的'軸Ox、Oy。畫(huà)直觀(guān)圖時(shí),把它畫(huà)成對應軸o'x'、o'y'、使∠x(chóng)'o'y'=45°(或135°);(2)平行于x軸的線(xiàn)段長(cháng)不變,平行于y軸的線(xiàn)段長(cháng)減半。(3)直觀(guān)圖中的45度原圖中就是90度,直觀(guān)圖中的90度原圖一定不是90度。
3、表(側)面積與體積公式:
、胖w:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h
、棋F體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:
、桥_體①表面積:S=S側+S上底S下底②側面積:S側=
、惹蝮w:①表面積:S=;②體積:V=
4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書(shū)寫(xiě)
。1)直線(xiàn)與平面平行:①線(xiàn)線(xiàn)平行線(xiàn)面平行;②面面平行線(xiàn)面平行。
。2)平面與平面平行:①線(xiàn)面平行面面平行。
。3)垂直問(wèn)題:線(xiàn)線(xiàn)垂直線(xiàn)面垂直面面垂直。核心是線(xiàn)面垂直:垂直平面內的兩條相交直線(xiàn)
5、求角:(步驟——Ⅰ。找或作角;Ⅱ。求角)
、女惷嬷本(xiàn)所成角的求法:平移法:平移直線(xiàn),構造三角形;
、浦本(xiàn)與平面所成的角:直線(xiàn)與射影所成的角
四、導數:導數的意義-導數公式-導數應用(極值最值問(wèn)題、曲線(xiàn)切線(xiàn)問(wèn)題)
1、導數的定義:在點(diǎn)處的導數記作。
2、導數的幾何物理意義:曲線(xiàn)在點(diǎn)處切線(xiàn)的斜率
、賙=f/(x0)表示過(guò)曲線(xiàn)y=f(x)上P(x0,f(x0))切線(xiàn)斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。
3、常見(jiàn)函數的導數公式:①;②;③;
、;⑥;⑦;⑧。
4、導數的四則運算法則:
5、導數的應用:
。1)利用導數判斷函數的單調性:設函數在某個(gè)區間內可導,如果,那么為增函數;如果,那么為減函數;
注意:如果已知為減函數求字母取值范圍,那么不等式恒成立。
。2)求極值的步驟:
、偾髮;
、谇蠓匠痰母;
、哿斜恚簷z驗在方程根的左右的符號,如果左正右負,那么函數在這個(gè)根處取得極大值;如果左負右正,那么函數在這個(gè)根處取得極小值;
。3)求可導函數最大值與最小值的步驟:
、∏蟮母;ⅱ把根與區間端點(diǎn)函數值比較,最大的為最大值,最小的是最小值。
五、常用邏輯用語(yǔ):
1、四種命題:
、旁}:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p
注:1、原命題與逆否命題等價(jià);逆命題與否命題等價(jià)。判斷命題真假時(shí)注意轉化。
2、注意命題的否定與否命題的區別:命題否定形式是;否命題是。命題“或”的否定是“且”;“且”的否定是“或”。
3、邏輯聯(lián)結詞:
、徘遥╝nd):命題形式pq;pqpqpqp
、苹颍╫r):命題形式pq;真真真真假
、欠牵╪ot):命題形式p。真假假真假
假真假真真
假假假假真
“或命題”的真假特點(diǎn)是“一真即真,要假全假”;
“且命題”的真假特點(diǎn)是“一假即假,要真全真”;
“非命題”的真假特點(diǎn)是“一真一假”
4、充要條件
由條件可推出結論,條件是結論成立的充分條件;由結論可推出條件,則條件是結論成立的必要條件。
5、全稱(chēng)命題與特稱(chēng)命題:
短語(yǔ)“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱(chēng)量詞,并用符號表示。含有全體量詞的命題,叫做全稱(chēng)命題。
短語(yǔ)“有一個(gè)”或“有些”或“至少有一個(gè)”在陳述中表示所述事物的個(gè)體或部分,邏輯中通常叫做存在量詞,并用符號表示,含有存在量詞的命題,叫做存在性命題。
全稱(chēng)命題p:;全稱(chēng)命題p的否定p:。
特稱(chēng)命題p:;特稱(chēng)命題p的否定p:
高二數學(xué)知識點(diǎn)總結最新9
(1)總體和樣本:
、僭诮y計學(xué)中,把研究對象的全體叫做總體.
、诎衙總(gè)研究對象叫做個(gè)體.
、郯芽傮w中個(gè)體的總數叫做總體容量.
、転榱搜芯靠傮w的有關(guān)性質(zhì),一般從總體中隨機抽取一部分:x1,x2,....,_研究,我們稱(chēng)它為樣本.其中個(gè)體的個(gè)數稱(chēng)為樣本容量.
。2)簡(jiǎn)單隨機抽樣,也叫純隨機抽樣。
就是從總體中不加任何分組、劃類(lèi)、排隊等,完全隨機地抽取調查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨立,彼此間無(wú)一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數目較少時(shí),才采用這種方法。
。3)簡(jiǎn)單隨機抽樣常用的方法:
、俪楹灧
、陔S機數表法
、塾嬎銠C模擬法
在簡(jiǎn)單隨機抽樣的.樣本容量設計中,主要考慮:
、倏傮w變異情況;
、谠试S誤差范圍;
、鄹怕时WC程度。
。4)抽簽法:
、俳o調查對象群體中的每一個(gè)對象編號;
、跍蕚涑楹灥墓ぞ,實(shí)施抽簽;
、蹖颖局械拿恳粋(gè)個(gè)體進(jìn)行測量或調查
高二數學(xué)知識點(diǎn)總結最新10
第一章:集合和函數的基本概念,錯誤基本都集中在空集這一概念上,而每次考試基本都會(huì )在選填題上涉及這一概念,一個(gè)不小心就是五分沒(méi)了。次一級的知識點(diǎn)就是集合的韋恩圖,會(huì )畫(huà)圖,集合的“并、補、交、非”也就解決了,還有函數的定義域和函數的單調性、增減性的概念,這些都是函數的基礎而且不難理解。在第一輪復習中一定要反復去記這些概念,的方法是寫(xiě)在筆記本上,每天至少看上一遍。
第二章:基本初等函數:指數、對數、冪函數三大函數的運算性質(zhì)及圖像。函數的幾大要素和相關(guān)考點(diǎn)基本都在函數圖像上有所體現,單調性、增減性、極值、零點(diǎn)等等。關(guān)于這三大函數的運算公式,多記多用,多做一點(diǎn)練習基本就沒(méi)多大問(wèn)題。函數圖像是這一章的重難點(diǎn),而且圖像問(wèn)題是不能靠記憶的,必須要理解,要會(huì )熟練的畫(huà)出函數圖像,定義域、值域、零點(diǎn)等等。對于冪函數還要搞清楚當指數冪大于一和小于一時(shí)圖像的不同及函數值的大小關(guān)系,這也是?汲ee點(diǎn)。另外指數函數和對數函數的對立關(guān)系及其相互之間要怎樣轉化問(wèn)題也要了解清楚。
第三章:函數的應用。主要就是函數與方程的`結合。其實(shí)就是的實(shí)根,即函數的零點(diǎn),也就是函數圖像與X軸的交點(diǎn)。這三者之間的轉化關(guān)系是這一章的重點(diǎn),要學(xué)會(huì )在這三者之間的靈活轉化,以求能最簡(jiǎn)單的解決問(wèn)題。關(guān)于證明零點(diǎn)的方法,直接計算加得必有零點(diǎn),連續函數在x軸上方下方有定義則有零點(diǎn)等等,這是這一章的難點(diǎn),這幾種證明方法都要記得,多練習強化。這二次函數的零點(diǎn)的Δ判別法,這個(gè)倒不算難。
【高二數學(xué)知識點(diǎn)總結最新】相關(guān)文章:
最新的高二數學(xué)向量知識點(diǎn)總結范文07-03
高二數學(xué)知識點(diǎn)總結05-21
高二數學(xué)知識點(diǎn)總結11-10