高二數學(xué)知識點(diǎn)總結(15篇)
總結就是把一個(gè)時(shí)段的學(xué)習、工作或其完成情況進(jìn)行一次全面系統的總結,它可以使我們更有效率,讓我們抽出時(shí)間寫(xiě)寫(xiě)總結吧?偨Y怎么寫(xiě)才是正確的呢?下面是小編幫大家整理的高二數學(xué)知識點(diǎn)總結,歡迎閱讀,希望大家能夠喜歡。
高二數學(xué)知識點(diǎn)總結1
課內重視聽(tīng)講,課后及時(shí)復習。
新知識的接受,數學(xué)能力的培養主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內的學(xué)習效率,尋求正確的學(xué)習方法。上課時(shí)要緊跟老師的思路,積極展開(kāi)思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學(xué)習,課后要及時(shí)復習不留疑點(diǎn)。首先要在做各種習題之前將老師所講的知識點(diǎn)回憶一遍,正確掌握各類(lèi)公式的推理過(guò)程,應盡量回憶而不采用不清楚立即翻書(shū)之舉。認真獨立完成作業(yè),勤于思考,從某種意義上講,應不造成不懂即問(wèn)的`學(xué)習作風(fēng),對于有些題目由于自己的思路不清,一時(shí)難以解出,應讓自己冷靜下來(lái)認真分析題目,盡量自己解決。在每個(gè)階段的學(xué)習中要進(jìn)行整理和歸納總結,把知識的點(diǎn)、線(xiàn)、面結合起來(lái)交織成知識網(wǎng)絡(luò ),納入自己的知識體系。
適當多做題,養成良好的解題習慣。
要想學(xué)好數學(xué),多做題是難免的,熟悉掌握各種題型的解題思路。剛開(kāi)始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開(kāi)拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對于一些易錯題,可備有錯題集,寫(xiě)出自己的解題思路和正確的解題過(guò)程兩者一起比較找出自己的錯誤所在,以便及時(shí)更正。在平時(shí)要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現的解題習慣與平時(shí)練習無(wú)異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養成良好的解題習慣是非常重要的。
調整心態(tài),正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個(gè)方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調整好自己的心態(tài),使自己在任何時(shí)候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰(shuí)也不能把我打倒,要有自己不垮,誰(shuí)也不能打垮我的自豪感。
在考試前要做好準備,練練常規題,把自己的思路展開(kāi),切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學(xué)會(huì )嘗試得分,使自己的水平正常甚至超常發(fā)揮。
高二數學(xué)知識點(diǎn)總結2
用樣本的數字特征估計總體的數字特征
1、本均值:
2、樣本標準差:
3.用樣本估計總體時(shí),如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會(huì )有偏差。在隨機抽樣中,這種偏差是不可避免的。
雖然我們用樣本數據得到的分布、均值和標準差并不是總體的真正的.分布、均值和標準差,而只是一個(gè)估計,但這種估計是合理的,特別是當樣本量很大時(shí),它們確實(shí)反映了總體的信息。
4.(1)如果把一組數據中的每一個(gè)數據都加上或減去同一個(gè)共同的常數,標準差不變
(2)如果把一組數據中的每一個(gè)數據乘以一個(gè)共同的常數k,標準差變?yōu)樵瓉?lái)的k倍
(3)一組數據中的值和最小值對標準差的影響,區間的應用;
“去掉一個(gè)分,去掉一個(gè)最低分”中的科學(xué)道理
高二數學(xué)知識點(diǎn)總結3
1.1柱、錐、臺、球的結構特征
1.2空間幾何體的三視圖和直觀(guān)圖
11三視圖:
正視圖:從前往后
側視圖:從左往右
俯視圖:從上往下
22畫(huà)三視圖的原則:
長(cháng)對齊、高對齊、寬相等
33直觀(guān)圖:斜二測畫(huà)法
44斜二測畫(huà)法的步驟:
(1).平行于坐標軸的線(xiàn)依然平行于坐標軸;
(2).平行于y軸的線(xiàn)長(cháng)度變半,平行于x,z軸的線(xiàn)長(cháng)度不變;
(3).畫(huà)法要寫(xiě)好。
5用斜二測畫(huà)法畫(huà)出長(cháng)方體的步驟:(1)畫(huà)軸(2)畫(huà)底面(3)畫(huà)側棱(4)成圖
1.3空間幾何體的表面積與體積
(一)空間幾何體的表面積
1棱柱、棱錐的表面積:各個(gè)面面積之和
2圓柱的表面積3圓錐的表面積
4圓臺的表面積
5球的表面積
(二)空間幾何體的體積
1柱體的體積
2錐體的體積
3臺體的體積
4球體的體積
高二數學(xué)必修二知識點(diǎn):直線(xiàn)與平面的位置關(guān)系
2.1空間點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系
2.1.1
1平面含義:平面是無(wú)限延展的
2平面的畫(huà)法及表示
(1)平面的畫(huà)法:水平放置的平面通常畫(huà)成一個(gè)平行四邊形,銳角畫(huà)成450,且橫邊畫(huà)成鄰邊的2倍長(cháng)(如圖)
(2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個(gè)頂點(diǎn)或者相對的`兩個(gè)頂點(diǎn)的大寫(xiě)字母來(lái)表示,如平面AC、平面ABCD等。
3三個(gè)公理:
(1)公理1:如果一條直線(xiàn)上的兩點(diǎn)在一個(gè)平面內,那么這條直線(xiàn)在此平面內
符號表示為
A∈L
B∈L=>Lα
A∈α
B∈α
公理1作用:判斷直線(xiàn)是否在平面內
(2)公理2:過(guò)不在一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面。
符號表示為:A、B、C三點(diǎn)不共線(xiàn)=>有且只有一個(gè)平面α,
使A∈α、B∈α、C∈α。
公理2作用:確定一個(gè)平面的依據。
(3)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn)。
符號表示為:P∈α∩β=>α∩β=L,且P∈L
公理3作用:判定兩個(gè)平面是否相交的依據
2.1.2空間中直線(xiàn)與直線(xiàn)之間的位置關(guān)系
1空間的兩條直線(xiàn)有如下三種關(guān)系:
共面直線(xiàn)
相交直線(xiàn):同一平面內,有且只有一個(gè)公共點(diǎn);
平行直線(xiàn):同一平面內,沒(méi)有公共點(diǎn);
異面直線(xiàn):不同在任何一個(gè)平面內,沒(méi)有公共點(diǎn)。
2公理4:平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行。
符號表示為:設a、b、c是三條直線(xiàn)
a∥b
c∥b
強調:公理4實(shí)質(zhì)上是說(shuō)平行具有傳遞性,在平面、空間這個(gè)性質(zhì)都適用。
公理4作用:判斷空間兩條直線(xiàn)平行的依據。
3等角定理:空間中如果兩個(gè)角的兩邊分別對應平行,那么這兩個(gè)角相等或互補
4注意點(diǎn):
、賏'與b'所成的角的大小只由a、b的相互位置來(lái)確定,與O的選擇無(wú)關(guān),為了簡(jiǎn)便,點(diǎn)O一般取在兩直線(xiàn)中的一條上;
、趦蓷l異面直線(xiàn)所成的角θ∈(0,);
、郛攦蓷l異面直線(xiàn)所成的角是直角時(shí),我們就說(shuō)這兩條異面直線(xiàn)互相垂直,記作a⊥b;
、軆蓷l直線(xiàn)互相垂直,有共面垂直與異面垂直兩種情形;
、萦嬎阒,通常把兩條異面直線(xiàn)所成的角轉化為兩條相交直線(xiàn)所成的角。
2.1.3—2.1.4空間中直線(xiàn)與平面、平面與平面之間的位置關(guān)系
1、直線(xiàn)與平面有三種位置關(guān)系:
(1)直線(xiàn)在平面內——有無(wú)數個(gè)公共點(diǎn)
(2)直線(xiàn)與平面相交——有且只有一個(gè)公共點(diǎn)
(3)直線(xiàn)在平面平行——沒(méi)有公共點(diǎn)
指出:直線(xiàn)與平面相交或平行的情況統稱(chēng)為直線(xiàn)在平面外,可用aα來(lái)表示
aαa∩α=Aa∥α
2.2.直線(xiàn)、平面平行的判定及其性質(zhì)
2.2.1直線(xiàn)與平面平行的判定
1、直線(xiàn)與平面平行的判定定理:平面外一條直線(xiàn)與此平面內的一條直線(xiàn)平行,則該直線(xiàn)與此平面平行。
簡(jiǎn)記為:線(xiàn)線(xiàn)平行,則線(xiàn)面平行。
符號表示:
aα
bβ=>a∥α
a∥b
2.2.2平面與平面平行的判定
1、兩個(gè)平面平行的判定定理:一個(gè)平面內的兩條交直線(xiàn)與另一個(gè)平面平行,則這兩個(gè)平面平行。
符號表示:
aβ
bβ
a∩b=Pβ∥α
a∥α
b∥α
2、判斷兩平面平行的方法有三種:
(1)用定義;
(2)判定定理;
(3)垂直于同一條直線(xiàn)的兩個(gè)平面平行。
2.2.3—2.2.4直線(xiàn)與平面、平面與平面平行的性質(zhì)
1、定理:一條直線(xiàn)與一個(gè)平面平行,則過(guò)這條直線(xiàn)的任一平面與此平面的交線(xiàn)與該直線(xiàn)平行。
簡(jiǎn)記為:線(xiàn)面平行則線(xiàn)線(xiàn)平行。
符號表示:
a∥α
aβa∥b
α∩β=b
作用:利用該定理可解決直線(xiàn)間的平行問(wèn)題。
2、定理:如果兩個(gè)平面同時(shí)與第三個(gè)平面相交,那么它們的交線(xiàn)平行。
符號表示:
α∥β
α∩γ=aa∥b
β∩γ=b
作用:可以由平面與平面平行得出直線(xiàn)與直線(xiàn)平行
2.3直線(xiàn)、平面垂直的判定及其性質(zhì)
2.3.1直線(xiàn)與平面垂直的判定
1、定義
如果直線(xiàn)L與平面α內的任意一條直線(xiàn)都垂直,我們就說(shuō)直線(xiàn)L與平面α互相垂直,記作L⊥α,直線(xiàn)L叫做平面α的垂線(xiàn),平面α叫做直線(xiàn)L的垂面。直線(xiàn)與平面垂直時(shí),它們公共點(diǎn)P叫做垂足。
2、判定定理:一條直線(xiàn)與一個(gè)平面內的兩條相交直線(xiàn)都垂直,則該直線(xiàn)與此平面垂直。
注意點(diǎn):a)定理中的“兩條相交直線(xiàn)”這一條件不可忽視;
b)定理體現了“直線(xiàn)與平面垂直”與“直線(xiàn)與直線(xiàn)垂直”互相轉化的數學(xué)思想。
2.3.2平面與平面垂直的判定
1、二面角的概念:表示從空間一直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形
2、二面角的記法:二面角α-l-β或α-AB-β
3、兩個(gè)平面互相垂直的判定定理:一個(gè)平面過(guò)另一個(gè)平面的垂線(xiàn),則這兩個(gè)平面垂直。
2.3.3—2.3.4直線(xiàn)與平面、平面與平面垂直的性質(zhì)
1、定理:垂直于同一個(gè)平面的兩條直線(xiàn)平行。
2性質(zhì)定理:兩個(gè)平面垂直,則一個(gè)平面內垂直于交線(xiàn)的直線(xiàn)與另一個(gè)平面垂直。
高二數學(xué)知識點(diǎn)總結4
1、學(xué)會(huì )三視圖的分析:
2、斜二測畫(huà)法應注意的地方:
。1)在已知圖形中取互相垂直的軸Ox、Oy。畫(huà)直觀(guān)圖時(shí),把它畫(huà)成對應軸o'x'、o'y'、使∠x(chóng)'o'y'=45°(或135°);(2)平行于x軸的.線(xiàn)段長(cháng)不變,平行于y軸的線(xiàn)段長(cháng)減半。(3)直觀(guān)圖中的45度原圖中就是90度,直觀(guān)圖中的90度原圖一定不是90度。
3、表(側)面積與體積公式:
、胖w:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h
、棋F體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:
、桥_體①表面積:S=S側+S上底S下底②側面積:S側=
、惹蝮w:①表面積:S=;②體積:V=
4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書(shū)寫(xiě)
。1)直線(xiàn)與平面平行:①線(xiàn)線(xiàn)平行線(xiàn)面平行;②面面平行線(xiàn)面平行。
。2)平面與平面平行:①線(xiàn)面平行面面平行。
。3)垂直問(wèn)題:線(xiàn)線(xiàn)垂直線(xiàn)面垂直面面垂直。核心是線(xiàn)面垂直:垂直平面內的兩條相交直線(xiàn)
5、求角:(步驟———————Ⅰ。找或作角;Ⅱ。求角)
、女惷嬷本(xiàn)所成角的求法:平移法:平移直線(xiàn),構造三角形;
、浦本(xiàn)與平面所成的角:直線(xiàn)與射影所成的角
高二數學(xué)知識點(diǎn)總結5
排列組合
排列P------和順序有關(guān)
組合C-------不牽涉到順序的問(wèn)題
排列分順序,組合不分
例如把5本不同的書(shū)分給3個(gè)人,有幾種分法."排列"
把5本書(shū)分給3個(gè)人,有幾種分法"組合"
1.排列及計算公式
從n個(gè)不同元素中,任取m(m≤n)個(gè)元素按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有排列的個(gè)數,叫做從n個(gè)不同元素中取出m個(gè)元素的排列數,用符號p(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規定0!=1).
2.組合及計算公式
從n個(gè)不同元素中,任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有組合的個(gè)數,叫做從n個(gè)不同元素中取出m個(gè)元素的組合數.用符號
c(n,m)表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);
3.其他排列與組合公式
從n個(gè)元素中取出r個(gè)元素的循環(huán)排列數=p(n,r)/r=n!/r(n-r)!.
n個(gè)元素被分成k類(lèi),每類(lèi)的個(gè)數分別是n1,n2,...nk這n個(gè)元素的'全排列數為
n!/(n1!_2!_.._k!).
k類(lèi)元素,每類(lèi)的個(gè)數無(wú)限,從中取出m個(gè)元素的組合數為c(m+k-1,m).
排列(Pnm(n為下標,m為上標))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號);Pnn(兩個(gè)n分別為上標和下標)=n!;0!=1;Pn1(n為下標1為上標)=n
組合(Cnm(n為下標,m為上標))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個(gè)n分別為上標和下標)=1;Cn1(n為下標1為上標)=n;Cnm=Cnn-m
20xx-07-0813:30
公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N-元素的總個(gè)數R參與選擇的元素個(gè)數!-階乘,如9!=9________
從N倒數r個(gè),表達式應該為n_n-1)_n-2)..(n-r+1);
因為從n到(n-r+1)個(gè)數為n-(n-r+1)=r
高二數學(xué)知識點(diǎn)總結6
一、直線(xiàn)與圓:
1、直線(xiàn)的傾斜角的范圍是
在平面直角坐標系中,對于一條與軸相交的直線(xiàn),如果把軸繞著(zhù)交點(diǎn)按逆時(shí)針?lè )较蜣D到和直線(xiàn)重合時(shí)所轉的最小正角記為,就叫做直線(xiàn)的傾斜角。當直線(xiàn)與軸重合或平行時(shí),規定傾斜角為0;
2、斜率:已知直線(xiàn)的傾斜角為α,且α≠90°,則斜率k=tanα.
過(guò)兩點(diǎn)(x1,y1),(x2,y2)的直線(xiàn)的斜率k=(y2-y1)/(x2-x1),另外切線(xiàn)的斜率用求導的方法。
3、直線(xiàn)方程:⑴點(diǎn)斜式:直線(xiàn)過(guò)點(diǎn)斜率為,則直線(xiàn)方程為,
、菩苯厥:直線(xiàn)在軸上的截距為和斜率,則直線(xiàn)方程為
4、直線(xiàn)與直線(xiàn)的位置關(guān)系:
(1)平行A1/A2=B1/B2注意檢驗(2)垂直A1A2+B1B2=0
5、點(diǎn)到直線(xiàn)的距離公式;
兩條平行線(xiàn)與的距離是
6、圓的'標準方程:.⑵圓的一般方程:
注意能將標準方程化為一般方程
7、過(guò)圓外一點(diǎn)作圓的切線(xiàn),一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線(xiàn).
8、直線(xiàn)與圓的位置關(guān)系,通常轉化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構造直角三角形解決弦長(cháng)問(wèn)題.①相離②相切③相交
9、解決直線(xiàn)與圓的關(guān)系問(wèn)題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長(cháng)、弦心距構成直角三角形)直線(xiàn)與圓相交所得弦長(cháng)
二、圓錐曲線(xiàn)方程:
1、橢圓:①方程(a>b>0)注意還有一個(gè);②定義:|PF1|+|PF2|=2a>2c;③e=④長(cháng)軸長(cháng)為2a,短軸長(cháng)為2b,焦距為2c;a2=b2+c2;
2、雙曲線(xiàn):①方程(a,b>0)注意還有一個(gè);②定義:||PF1|-|PF2||=2a<2c;③e=;④實(shí)軸長(cháng)為2a,虛軸長(cháng)為2b,焦距為2c;漸進(jìn)線(xiàn)或c2=a2+b2
3、拋物線(xiàn):①方程y2=2px注意還有三個(gè),能區別開(kāi)口方向;②定義:|PF|=d焦點(diǎn)F(,0),準線(xiàn)x=-;③焦半徑;焦點(diǎn)弦=x1+x2+p;
4、直線(xiàn)被圓錐曲線(xiàn)截得的弦長(cháng)公式:
三、直線(xiàn)、平面、簡(jiǎn)單幾何體:
1、學(xué)會(huì )三視圖的分析:
2、斜二測畫(huà)法應注意的地方:
(1)在已知圖形中取互相垂直的軸Ox、Oy。畫(huà)直觀(guān)圖時(shí),把它畫(huà)成對應軸o'x'、o'y'、使∠x(chóng)'o'y'=45°(或135°);
(2)平行于x軸的線(xiàn)段長(cháng)不變,平行于y軸的線(xiàn)段長(cháng)減半.
(3)直觀(guān)圖中的45度原圖中就是90度,直觀(guān)圖中的90度原圖一定不是90度.
3、表(側)面積與體積公式:
、胖w:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h
、棋F體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:
、桥_體①表面積:S=S側+S上底S下底②側面積:S側=
、惹蝮w:①表面積:S=;②體積:V=
4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書(shū)寫(xiě)
(1)直線(xiàn)與平面平行:①線(xiàn)線(xiàn)平行線(xiàn)面平行;②面面平行線(xiàn)面平行。
(2)平面與平面平行:①線(xiàn)面平行面面平行。
(3)垂直問(wèn)題:線(xiàn)線(xiàn)垂直線(xiàn)面垂直面面垂直。核心是線(xiàn)面垂直:垂直平面內的兩條相交直線(xiàn)
5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)
、女惷嬷本(xiàn)所成角的求法:平移法:平移直線(xiàn),構造三角形;
、浦本(xiàn)與平面所成的角:直線(xiàn)與射影所成的角
高二數學(xué)知識點(diǎn)總結7
等差數列
對于一個(gè)數列{an},如果任意相鄰兩項之差為一個(gè)常數,那么該數列為等差數列,且稱(chēng)這一定值差為公差,記為d;從第一項a1到第n項an的總和,記為Sn。
那么,通項公式為,其求法很重要,利用了“疊加原理”的思想:
將以上n-1個(gè)式子相加,便會(huì )接連消去很多相關(guān)的項,最終等式左邊余下an,而右邊則余下a1和n-1個(gè)d,如此便得到上述通項公式。
此外,數列前n項的和,其具體推導方式較簡(jiǎn)單,可用以上類(lèi)似的疊加的方法,也可以采取迭代的方法,在此,不再復述。
值得說(shuō)明的是,前n項的和Sn除以n后,便得到一個(gè)以a1為首項,以d/2為公差的新數列,利用這一特點(diǎn)可以使很多涉及Sn的數列問(wèn)題迎刃而解。
等比數列
對于一個(gè)數列{an},如果任意相鄰兩項之商(即二者的`比)為一個(gè)常數,那么該數列為等比數列,且稱(chēng)這一定值商為公比q;從第一項a1到第n項an的總和,記為T(mén)n。
那么,通項公式為(即a1乘以q的(n-1)次方,其推導為“連乘原理”的思想:
a2=a1_,
a3=a2_,
a4=a3_,
````````
an=an-1_,
將以上(n-1)項相乘,左右消去相應項后,左邊余下an,右邊余下a1和(n-1)個(gè)q的乘積,也即得到了所述通項公式。
此外,當q=1時(shí)該數列的前n項和Tn=a1_
當q≠1時(shí)該數列前n項的和Tn=a1_1-q^(n))/(1-q).
高二數學(xué)知識點(diǎn)總結8
1.萬(wàn)能公式令tan(a/2)=t sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2)
2.輔助角公式 asint+bcost=(a^2+b^2)^(1/2)sin(t+r) cosr=a/[(a^2+b^2)^(1/2)] sinr=b/[(a^2+b^2)^(1/2)] tanr=b/a
3.三倍角公式 sin(3a)=3sina-4(sina)^3 cos(3a)=4(cosa)^3-3cosa tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)] sina*cosb=[sin(a+b)+sin(a-b)]/2cosa*sinb=[sin(a+b)-sin(a-b)]/2 cosa*cosb=[cos(a+b)+cos(a-b)]/2 sina*sinb=-[cos(a+b)-cos(a-b)]/2 sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2] cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2] cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2] 向量公式: 1.單位向量:?jiǎn)挝幌蛄縜0=向量a/|向量a| 2.P(x,y) 那么 向量OP=x 向量i+y 向量j |向量OP|=根號(x 平方+y 平方) 3.P1(x1,y1) P2(x2,y2) 那么向量P1P2={x2-x1,y2-y1} |向量P1P2|=根號[(x2-x1)平方+(y2-y1)平方]
4.向量a={x1,x2}向量b={x2,y2} 向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2 Cosα=向量a*向量b/|向量a|*|向量b| (x1x2+y1y2) 根號(x1平方+y1 平方)*根號(x2 平方+y2 平方)
5.空間向量:同上推論 (提示:向量a={x,y,z})
6.充要條件: 如果向量a向量b 那么向量a*向量b=0 如果向量a//向量b 那么向量a*向量b=|向量a|*|向量b| 或者x1/x2=y1/y2
7.|向量a向量b|平方 =|向量a|平方+|向量b|平方2 向量a*向量b =(向量a向量b)平方
高二數學(xué)知識點(diǎn)總結9
考點(diǎn)一:向量的概念、向量的基本定理
【內容解讀】了解向量的實(shí)際背景,掌握向量、零向量、平行向量、共線(xiàn)向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。
注意對向量概念的理解,向量是可以自由移動(dòng)的,平移后所得向量與原向量相同;兩個(gè)向量無(wú)法比較大小,它們的?杀容^大小。
考點(diǎn)二:向量的運算
【內容解讀】向量的運算要求掌握向量的加減法運算,會(huì )用平行四邊形法則、三角形法則進(jìn)行向量的加減運算;掌握實(shí)數與向量的積運算,理解兩個(gè)向量共線(xiàn)的含義,會(huì )判斷兩個(gè)向量的平行關(guān)系;掌握向量的數量積的運算,體會(huì )平面向量的數量積與向量投影的關(guān)系,并理解其幾何意義,掌握數量積的坐標表達式,會(huì )進(jìn)行平面向量積的運算,能運用數量積表示兩個(gè)向量的夾角,會(huì )用向量積判斷兩個(gè)平面向量的垂直關(guān)系。
【命題規律】命題形式主要以選擇、填空題型出現,難度不大,考查重點(diǎn)為模和向量夾角的定義、夾角公式、向量的坐標運算,有時(shí)也會(huì )與其它內容相結合。
考點(diǎn)三:定比分點(diǎn)
【內容解讀】掌握線(xiàn)段的定比分點(diǎn)和中點(diǎn)坐標公式,并能熟練應用,求點(diǎn)分有向線(xiàn)段所成比時(shí),可借助圖形來(lái)幫助理解。
【命題規律】重點(diǎn)考查定義和公式,主要以選擇題或填空題型出現,難度一般。由于向量應用的廣泛性,經(jīng)常也會(huì )與三角函數,解析幾何一并考查,若出現在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。
考點(diǎn)四:向量與三角函數的'綜合問(wèn)題
【內容解讀】向量與三角函數的綜合問(wèn)題是高考經(jīng)常出現的問(wèn)題,考查了向量的知識,三角函數的知識,達到了高考中試題的覆蓋面的要求。
【命題規律】命題以三角函數作為坐標,以向量的坐標運算或向量與解三角形的內容相結合,也有向量與三角函數圖象平移結合的問(wèn)題,屬中檔偏易題。
考點(diǎn)五:平面向量與函數問(wèn)題的交匯
【內容解讀】平面向量與函數交匯的問(wèn)題,主要是向量與二次函數結合的問(wèn)題為主,要注意自變量的取值范圍。
【命題規律】命題多以解答題為主,屬中檔題。
考點(diǎn)六:平面向量在平面幾何中的應用
【內容解讀】向量的坐標表示實(shí)際上就是向量的代數表示.在引入向量的坐標表示后,使向量之間的運算代數化,這樣就可以將“形”和“數”緊密地結合在一起.因此,許多平面幾何問(wèn)題中較難解決的問(wèn)題,都可以轉化為大家熟悉的代數運算的論證.也就是把平面幾何圖形放到適當的坐標系中,賦予幾何圖形有關(guān)點(diǎn)與平面向量具體的坐標,這樣將有關(guān)平面幾何問(wèn)題轉化為相應的代數運算和向量運算,從而使問(wèn)題得到解決.
【命題規律】命題多以解答題為主,屬中等偏難的試題。
高二數學(xué)知識點(diǎn)總結10
(1)必然事件:在條件S下,一定會(huì )發(fā)生的事件,叫相對于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會(huì )發(fā)生的事件,叫相對于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統稱(chēng)為相對于條件S的確定事件;
(4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機事件;
(5)頻數與頻率:在相同的條件S下重復n次試驗,觀(guān)察某一事件A是否出現,稱(chēng)n次試驗中事件A出現的次數nA為事件A出現的頻數;稱(chēng)事件A出現的比例fn(A)=nnA為事件A出現的概率:對于給定的隨機事件A,如果隨著(zhù)試驗次數的`增加,事件A發(fā)生的頻率fn(A)穩定在某個(gè)常數上,把這個(gè)常數記作P(A),稱(chēng)為事件A的概率。
(6)頻率與概率的區別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數nA與試驗總次數n的比值nnA,它具有一定的穩定性,總在某個(gè)常數附近擺動(dòng),且隨著(zhù)試驗次數的不斷增多,這種擺動(dòng)幅度越來(lái)越小。我們把這個(gè)常數叫做隨機事件的概率,概率從數量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個(gè)事件的概率。
然說(shuō)難度比較大,我建議考生,采取分部得分整個(gè)試
高二數學(xué)知識點(diǎn)總結11
1、導數的定義:在點(diǎn)處的導數記作.
2.導數的幾何物理意義:曲線(xiàn)在點(diǎn)處切線(xiàn)的'斜率
、賙=f/(x0)表示過(guò)曲線(xiàn)y=f(x)上P(x0,f(x0))切線(xiàn)斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。
3.常見(jiàn)函數的導數公式:
4.導數的四則運算法則:
5.導數的應用:
(1)利用導數判斷函數的單調性:設函數在某個(gè)區間內可導,如果,那么為增函數;如果,那么為減函數;
注意:如果已知為減函數求字母取值范圍,那么不等式恒成立。
(2)求極值的步驟:
、偾髮;
、谇蠓匠痰母;
、哿斜恚簷z驗在方程根的左右的符號,如果左正右負,那么函數在這個(gè)根處取得極大值;如果左負右正,那么函數在這個(gè)根處取得極小值;
(3)求可導函數值與最小值的步驟:
、∏蟮母;ⅱ把根與區間端點(diǎn)函數值比較,的為值,最小的是最小值。
高二數學(xué)知識點(diǎn)總結12
【不等關(guān)系及不等式】
一、不等關(guān)系及不等式知識點(diǎn)
1.不等式的定義
在客觀(guān)世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數學(xué)符號、、連接兩個(gè)數或代數式以表示它們之間的'不等關(guān)系,含有這些不等號的式子,叫做不等式.
2.比較兩個(gè)實(shí)數的大小
兩個(gè)實(shí)數的大小是用實(shí)數的運算性質(zhì)來(lái)定義的,有a-baa-b=0a-ba0,則有a/baa/b=1a/ba
3.不等式的性質(zhì)
(1)對稱(chēng)性:ab
(2)傳遞性:ab,ba
(3)可加性:aa+cb+c,ab,ca+c
(4)可乘性:ab,cacb0,c0bd;
(5)可乘方:a0bn(nN,n
(6)可開(kāi)方:a0
(nN,n2).
注意:
一個(gè)技巧
作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.
一種方法
待定系數法:求代數式的范圍時(shí),先用已知的代數式表示目標式,再利用多項式相等的法則求出參數,最后利用不等式的性質(zhì)求出目標式的范圍.
高二數學(xué)知識點(diǎn)總結13
平面向量
戴氏航天學(xué)校老師總結加法與減法的代數運算:
(1)若a=(x1,y1 ),b=(x2,y2 )則a b=(x1+x2,y1+y2 ).
向量加法與減法的幾何表示:平行四邊形法則、三角形法則。
戴氏航天學(xué)校老師總結向量加法有如下規律:+= +(交換律); +( +c)=( + )+c (結合律);
兩個(gè)向量共線(xiàn)的充要條件:
(1) 向量b與非零向量共線(xiàn)的充要條件是有且僅有一個(gè)實(shí)數,使得b= .
(2) 若=(),b=()則‖b .
平面向量基本定理:
若e1、e2是同一平面內的'兩個(gè)不共線(xiàn)向量,那么對于這一平面內的任一向量,戴氏航天學(xué)校老師提醒有且只 有一對實(shí)數,,使得= e1+ e2
高二數學(xué)知識點(diǎn)總結14
一、集合、簡(jiǎn)易邏輯(14課時(shí),8個(gè))1.集合;2.子集;3.補集;4.交集;5.并集;6.邏輯連結詞;7.四種命題;8.充要條件.
二、函數(30課時(shí),12個(gè))1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關(guān)系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質(zhì);11.對數函數.12.函數的應用舉例.
三、數列(12課時(shí),5個(gè))1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式.
四、三角函數(46課時(shí)17個(gè))1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4,單位圓中的三角函數線(xiàn);5.同角三角函數的基本關(guān)系式;6.正弦、余弦的誘導公式’7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數、余弦函數的圖象和性質(zhì);10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質(zhì);14.已知三角函數值求角;15.正弦定理;16余弦定理;17斜三角形解法舉例.
五、平面向量(12課時(shí),8個(gè))1.向量2.向量的加法與減法3.實(shí)數與向量的積;4.平面向量的坐標表示;5.線(xiàn)段的定比分點(diǎn);6.平面向量的數量積;7.平面兩點(diǎn)間的距離;8.平移.
六、不等式(22課時(shí),5個(gè))1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式.
七、直線(xiàn)和圓的方程(22課時(shí),12個(gè))1.直線(xiàn)的傾斜角和斜率;2.直線(xiàn)方程的點(diǎn)斜式和兩點(diǎn)式;3.直線(xiàn)方程的一般式;4.兩條直線(xiàn)平行與垂直的條件;5.兩條直線(xiàn)的交角;6.點(diǎn)到直線(xiàn)的距離;7.用二元一次不等式表示平面區域;8.簡(jiǎn)單線(xiàn)性規劃問(wèn)題.9.曲線(xiàn)與方程的概念;10.由已知條件列出曲線(xiàn)方程;11.圓的標準方程和一般方程;12.圓的參數方程.
八、圓錐曲線(xiàn)(18課時(shí),7個(gè))1橢圓及其標準方程;2.橢圓的簡(jiǎn)單幾何性質(zhì);3.橢圓的參數方程;4.雙曲線(xiàn)及其標準方程;5.雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì);6.拋物線(xiàn)及其標準方程;7.拋物線(xiàn)的簡(jiǎn)單幾何性質(zhì).九、(B)直線(xiàn)、平面、簡(jiǎn)單何體(36課時(shí),28個(gè))1.平面及基本性質(zhì);2.平面圖形直觀(guān)圖的畫(huà)法;3.平面直線(xiàn);4.直線(xiàn)和平面平行的'判定與性質(zhì);5,直線(xiàn)和平面垂直的判與性質(zhì);6.三垂線(xiàn)定理及其逆定理;7.兩個(gè)平面的位置關(guān)系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線(xiàn)的方向向量;12.異面直線(xiàn)所成的角;13.異面直線(xiàn)的公垂線(xiàn);14異面直線(xiàn)的距離;15.直線(xiàn)和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線(xiàn)和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球.
十、排列、組合、二項式定理(18課時(shí),8個(gè))1.分類(lèi)計數原理與分步計數原理.2.排列;3.排列數公式’4.組合;5.組合數公式;6.組合數的兩個(gè)性質(zhì);7.二項式定理;8.二項展開(kāi)式的性質(zhì).
十一、概率(12課時(shí),5個(gè))1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個(gè)發(fā)生的概率;4.相互獨立事件同時(shí)發(fā)生的概率;5.獨立重復試驗.選修Ⅱ(24個(gè))
十二、概率與統計(14課時(shí),6個(gè))1.離散型隨機變量的分布列;2.離散型隨機變量的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態(tài)分布;6.線(xiàn)性回歸.
十三、極限(12課時(shí),6個(gè))1.數學(xué)歸納法;2.數學(xué)歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性.
十四、導數(18課時(shí),8個(gè))1.導數的概念;2.導數的幾何意義;3.幾種常見(jiàn)函數的導數;4.兩個(gè)函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8函數的最大值和最小值.
十五、復數(4課時(shí),4個(gè))1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法答案補充高中數學(xué)有130個(gè)知識點(diǎn),從前一份試卷要考查90個(gè)知識點(diǎn),覆蓋率達70%左右,而且把這一項作為衡量試卷成功與否的標準之一.這一傳統近年被打破,取而代之的是關(guān)注思維,突出能力,重視思想方法和思維能力的考查.現在的我們學(xué)數學(xué)比前人幸福啊!!相信對你的學(xué)習會(huì )有幫助的,祝你成功!答案補充一試全國高中數學(xué)聯(lián)賽的一試競賽大綱,完全按照全日制中學(xué)《數學(xué)教學(xué)大綱》中所規定的教學(xué)要求和內容,即高考所規定的知識范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。二試1、平面幾何基本要求:掌握初中數學(xué)競賽大綱所確定的所有內容。補充要求:面積和面積方法。幾個(gè)重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。幾個(gè)重要的極值:到三角形三頂點(diǎn)距離之和最小的點(diǎn)--費馬點(diǎn)。到三角形三頂點(diǎn)距離的平方和最小的點(diǎn),重心。三角形內到三邊距離之積最大的點(diǎn),重心。幾何不等式。簡(jiǎn)單的等周問(wèn)題。了解下述定理:在周長(cháng)一定的n邊形的集合中,正n邊形的面積最大。在周長(cháng)一定的簡(jiǎn)單閉曲線(xiàn)的集合中,圓的面積最大。在面積一定的n邊形的集合中,正n邊形的周長(cháng)最小。在面積一定的簡(jiǎn)單閉曲線(xiàn)的集合中,圓的周長(cháng)最小。幾何中的運動(dòng):反射、平移、旋轉。復數方法、向量方法。平面凸集、凸包及應用。答案補充第二數學(xué)歸納法。遞歸,一階、二階遞歸,特征方程法。函數迭代,求n次迭代,簡(jiǎn)單的函數方程。n個(gè)變元的平均不等式,柯西不等式,排序不等式及應用。復數的指數形式,歐拉公式,棣莫佛定理,單位根,單位根的應用。圓排列,有重復的排列與組合,簡(jiǎn)單的組合恒等式。一元n次方程(多項式)根的個(gè)數,根與系數的關(guān)系,實(shí)系數方程虛根成對定理。簡(jiǎn)單的初等數論問(wèn)題,除初中大綱中所包括的內容外,還應包括無(wú)窮遞降法,同余,歐幾里得除法,非負最小完全剩余類(lèi),高斯函數,費馬小定理,歐拉函數,孫子定理,格點(diǎn)及其性質(zhì)。3、立體幾何多面角,多面角的性質(zhì)。三面角、直三面角的基本性質(zhì)。正多面體,歐拉定理。體積證法。截面,會(huì )作截面、表面展開(kāi)圖。4、平面解析幾何直線(xiàn)的法線(xiàn)式,直線(xiàn)的極坐標方程,直線(xiàn)束及其應用。二元一次不等式表示的區域。三角形的面積公式。圓錐曲線(xiàn)的切線(xiàn)和法線(xiàn)。圓的冪和根軸。
高二數學(xué)知識點(diǎn)總結15
第一章:集合和函數的基本概念,錯誤基本都集中在空集這一概念上,而每次考試基本都會(huì )在選填題上涉及這一概念,一個(gè)不小心就是五分沒(méi)了。次一級的知識點(diǎn)就是集合的韋恩圖,會(huì )畫(huà)圖,集合的“并、補、交、非”也就解決了,還有函數的定義域和函數的單調性、增減性的概念,這些都是函數的基礎而且不難理解。在第一輪復習中一定要反復去記這些概念,的方法是寫(xiě)在筆記本上,每天至少看上一遍。
第二章:基本初等函數:指數、對數、冪函數三大函數的運算性質(zhì)及圖像。函數的幾大要素和相關(guān)考點(diǎn)基本都在函數圖像上有所體現,單調性、增減性、極值、零點(diǎn)等等。關(guān)于這三大函數的運算公式,多記多用,多做一點(diǎn)練習基本就沒(méi)多大問(wèn)題。函數圖像是這一章的重難點(diǎn),而且圖像問(wèn)題是不能靠記憶的,必須要理解,要會(huì )熟練的畫(huà)出函數圖像,定義域、值域、零點(diǎn)等等。對于冪函數還要搞清楚當指數冪大于一和小于一時(shí)圖像的不同及函數值的大小關(guān)系,這也是?汲ee點(diǎn)。另外指數函數和對數函數的對立關(guān)系及其相互之間要怎樣轉化問(wèn)題也要了解清楚。
第三章:函數的應用。主要就是函數與方程的`結合。其實(shí)就是的實(shí)根,即函數的零點(diǎn),也就是函數圖像與X軸的交點(diǎn)。這三者之間的轉化關(guān)系是這一章的重點(diǎn),要學(xué)會(huì )在這三者之間的靈活轉化,以求能最簡(jiǎn)單的解決問(wèn)題。關(guān)于證明零點(diǎn)的方法,直接計算加得必有零點(diǎn),連續函數在x軸上方下方有定義則有零點(diǎn)等等,這是這一章的難點(diǎn),這幾種證明方法都要記得,多練習強化。這二次函數的零點(diǎn)的Δ判別法,這個(gè)倒不算難。
【高二數學(xué)知識點(diǎn)總結】相關(guān)文章:
高二數學(xué)知識點(diǎn)總結11-10
高二數學(xué)知識點(diǎn)總結10-18