橢圓知識點(diǎn)總結

時(shí)間:2022-06-24 01:32:53 總結范文 我要投稿

橢圓知識點(diǎn)總結

  總結在一個(gè)時(shí)期、一個(gè)年度、一個(gè)階段對學(xué)習和工作生活等情況加以回顧和分析的一種書(shū)面材料,它能夠使頭腦更加清醒,目標更加明確,讓我們來(lái)為自己寫(xiě)一份總結吧。但是卻發(fā)現不知道該寫(xiě)些什么,以下是小編為大家收集的橢圓知識點(diǎn)總結,僅供參考,歡迎大家閱讀。

橢圓知識點(diǎn)總結

橢圓知識點(diǎn)總結1

  知識點(diǎn)一橢圓的定義

  平面內到兩個(gè)定點(diǎn)的距離之和等于常數(大于)的點(diǎn)的集合叫做橢圓。兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)間的距離叫做橢圓的焦距。

  根據橢圓的定義可知:橢圓上的點(diǎn)M滿(mǎn)足集合,,且都為常數。

  當即時(shí),集合P為橢圓。

  當即時(shí),集合P為線(xiàn)段。

  當即時(shí),集合P為空集。

  知識點(diǎn)二橢圓的標準方程

  (1),焦點(diǎn)在軸上時(shí),焦點(diǎn)為,焦點(diǎn)。

  (2),焦點(diǎn)在軸上時(shí),焦點(diǎn)為,焦點(diǎn)。

  知識點(diǎn)三橢圓方程的一般式

  這種形式的方程在課本中雖然沒(méi)有明確給出,但在應用中有時(shí)比較方便,在此提供出來(lái),作為參考:

  (其中為同號且不為零的常數,),它包含焦點(diǎn)在軸或軸上兩種情形。方程可變形為。

  當時(shí),橢圓的焦點(diǎn)在軸上;當時(shí),橢圓的焦點(diǎn)在軸上。

  一般式,通常也設為,應特別注意均大于0,標準方程為。

  知識點(diǎn)四橢圓標準方程的求法

  1.定義法

  橢圓標準方程可由定義直接求得,這是求橢圓方程中很重要的方法之一,當問(wèn)題是以實(shí)際問(wèn)題給出時(shí),一定要注意使實(shí)際問(wèn)題有意義,因此要恰當地表示橢圓的范圍。

  例1、在△ABC中,A、B、C所對三邊分別為,且B(-1,0)C(1,0),求滿(mǎn)足,且成等差數列時(shí),頂點(diǎn)A的曲線(xiàn)方程。

  變式練習1.在△ABC中,點(diǎn)B(-6,0)、C(0,8),且成等差數列。

  (1)求證:頂點(diǎn)A在一個(gè)橢圓上運動(dòng)。

  (2)指出這個(gè)橢圓的焦點(diǎn)坐標以及焦距。

  2.待定系數法

  首先確定標準方程的類(lèi)型,并將其用有關(guān)參數表示出來(lái),然后結合問(wèn)題的條件,建立參數滿(mǎn)足的等式,求得的值,再代入所設方程,即一定性,二定量,最后寫(xiě)方程。

  例2、已知橢圓的中心在原點(diǎn),且經(jīng)過(guò)點(diǎn)P(3,0),=3b,求橢圓的標準方程。

  例3、已知橢圓的中心在原點(diǎn),以坐標軸為對稱(chēng)軸,且經(jīng)過(guò)兩點(diǎn),求橢圓方程。

  變式練習2.求適合下列條件的橢圓的方程;

  (1)兩個(gè)焦點(diǎn)分別是(-3,0),(3,0)且經(jīng)過(guò)點(diǎn)(5,0).

  (2)兩焦點(diǎn)在坐標軸上,兩焦點(diǎn)的中點(diǎn)為坐標原點(diǎn),焦距為8,橢圓上一點(diǎn)到兩焦點(diǎn)的距離之和為12.

  3.已知橢圓經(jīng)過(guò)點(diǎn)和點(diǎn),求橢圓的標準方程。

  4.求中心在原點(diǎn),焦點(diǎn)在坐標軸上,且經(jīng)過(guò)兩點(diǎn)的橢圓標準方程。

  知識點(diǎn)五共焦點(diǎn)的橢圓方程的求解

  一般地,與橢圓共焦點(diǎn)的橢圓可設其方程為。

  例4、過(guò)點(diǎn)(-3,2)且與有相同焦點(diǎn)的橢圓的.方程為()

  A.B.C.D.

  變式練習5.求經(jīng)過(guò)點(diǎn)(2,-3)且橢圓有共同焦點(diǎn)的橢圓方程。

  知識點(diǎn)六與橢圓有關(guān)的軌跡問(wèn)題的求解方法

  與橢圓有關(guān)的軌跡方程的求解是一種很重要的題型,教材中的例題就是利用代入求球軌。跡,其基本思路是設出軌跡上一點(diǎn)和已知曲線(xiàn)上一點(diǎn),建立其關(guān)系,再代入。

  例5、已知圓,從這個(gè)圓上任意一點(diǎn)向軸作垂線(xiàn)段,點(diǎn)在上,并且,求點(diǎn)的軌跡。

  知識點(diǎn)七與弦的中點(diǎn)有關(guān)問(wèn)題的求解方法

  直線(xiàn)與橢圓相交于兩點(diǎn)、,稱(chēng)線(xiàn)段為橢圓的相交弦。與這個(gè)弦中點(diǎn)有點(diǎn)的軌跡問(wèn)題是一類(lèi)綜合性很強的題目,因此解此類(lèi)問(wèn)題必須選擇一個(gè)合理的方法,如“設而不求”法,其主要特點(diǎn)是巧代線(xiàn)段的斜率。其方程具體是:設直線(xiàn)與橢圓相交于兩點(diǎn),坐標分別為、,線(xiàn)段的中點(diǎn)為,則有

 、偈-②式,得,即

  ∴

  通常將此方程用于求弦中點(diǎn)的軌跡方程。

  例6.已知:橢圓,求:

  (1)以P(2,-1)為中點(diǎn)的弦所在直線(xiàn)的方程;

  (2)斜率為2的相交弦中點(diǎn)的軌跡方程;

  (3)過(guò)Q(8,2)的直線(xiàn)被橢圓截得的弦中點(diǎn)的軌跡方程。

  第二部分:鞏固練習

  1.設為橢圓的焦點(diǎn),P為橢圓上一點(diǎn),則的周長(cháng)是()

  A.16B.8C.D.無(wú)法確定

  2.橢圓的兩個(gè)焦點(diǎn)之間的距離為()

  A.12B.4C.3D.2

  3.橢圓的一個(gè)焦點(diǎn)是(0,2),那么等于()

  A.-1B.1C.D.-

  4.已知橢圓的焦點(diǎn)是,P是橢圓上的一個(gè)動(dòng)點(diǎn),如果延長(cháng)到,使得,那么動(dòng)點(diǎn)的軌跡是()

  A.圓B.橢圓C.雙曲線(xiàn)的一支D.拋物線(xiàn)

  5.已知橢圓的焦點(diǎn)在軸上,則的取值范圍是__________.

  6.橢圓的焦點(diǎn)坐標是___________.

  7.橢圓的焦距為2,則正數的值____________.

  數學(xué)學(xué)習方法

  1、建立數學(xué)糾錯本。做作業(yè)或復習時(shí)做錯了題,一旦搞明白,決不放過(guò),建立一本錯誤登記本,以降低重復性錯誤,不怕第一次不會(huì ),不怕第一次出錯,就怕下一次還犯同樣的錯誤把平時(shí)容易出現錯誤的知識或推理記載下來(lái),以防再犯。爭取做到:找錯、析錯、改錯、

  防錯。達到:平時(shí)作業(yè)、課外做題及考試中,對出錯的數學(xué)題建立錯題集很有必要。

  2、記憶數學(xué)規律和數學(xué)小結論。

  3、經(jīng)常進(jìn)行一題多解,一題多變,從多側面、多角度思考問(wèn)題,挖掘問(wèn)題的實(shí)質(zhì)。

  4、經(jīng)常在做題后進(jìn)行一定的“反思”,思考一下本題所用的基礎知識,數學(xué)思想方法是什么,為什么要這樣想,本題的分析方法與解法,在解其它問(wèn)題時(shí),是否也用到過(guò)。無(wú)論是作業(yè)還是測驗,都應把準確性放在第一位,通法放在第一位。

  5、理解和弄懂所學(xué)的數學(xué)知識,知其然并知其所以然。學(xué)習不僅要理解和記住概念、定理、公式、法則等,而且還要想一想它們是如何得來(lái)的,與前面的知識是怎樣聯(lián)系著(zhù)的,表達中省略了什么,關(guān)鍵在哪里,對知識是否有新的認識,有否想到其他的解法等等。這樣細加分析、考慮后,就會(huì )對內容增添某些注解,補充一些新的解法或產(chǎn)生新的認識等。

  6、把學(xué)過(guò)內容貫串起來(lái),加以融會(huì )貫通,提煉出它的精神實(shí)質(zhì),抓住重點(diǎn)、線(xiàn)索和基本思想方法,組織整理成精煉的內容。這時(shí)由于知識出現高度概括,就更能促進(jìn)知識的遷移,也更有利于進(jìn)一步學(xué)習。

  怎么樣才能打好數學(xué)基礎

  第一,重視數學(xué)公式。有很多同學(xué)數學(xué)學(xué)不好就是因為對概念和公式不夠重視,具體的表現為對數學(xué)概念的理解只是停留在表明,不去挖掘引申的含義,對數學(xué)概念的特殊情況不明白。還有對數學(xué)概念和公式有的學(xué)生只是死記硬背,學(xué)生缺乏對概念的理解。

  還有一部分同學(xué)不重視對數學(xué)公式的記憶。其實(shí)記憶是理解的基礎。我們設想如果你不能將數學(xué)公式爛熟于心,那么又怎么能夠在數學(xué)題目中熟練的應用呢?

  第二,就是總結那些相似的數學(xué)題目。當我們養成了總結歸納的習慣,那么的學(xué)生就會(huì )知道自己在解決數學(xué)題目的時(shí)候哪些是自己比較擅長(cháng)的,哪些是自己還不足的。

  同時(shí)善于總結也會(huì )明白自己掌握哪些數學(xué)的解題方法,只有這樣你才能夠真正掌握了數學(xué)的解題技巧。其實(shí),做到總結和歸納是學(xué)會(huì )數學(xué)的關(guān)鍵,如果學(xué)生不會(huì )做到這一點(diǎn)那么久而久之,不會(huì )的數學(xué)題目還是不會(huì )。

橢圓知識點(diǎn)總結2

  兩角和公式

  sin(A+B)=sinAcosB+cosAsinBsin(A—B)=sinAcosB—sinBcosA

  cos(A+B)=cosAcosB—sinAsinBcos(A—B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1—tanAtanB)tan(A—B)=(tanA—tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB—1)/(ctgB+ctgA)ctg(A—B)=(ctgActgB+1)/(ctgB—ctgA)

  倍角公式

  tan2A=2tanA/(1—tan2A)ctg2A=(ctg2A—1)/2ctga

  cos2a=cos2a—sin2a=2cos2a—1=1—2sin2a

  半角公式

  sin(A/2)=√((1—cosA)/2)sin(A/2)=—√((1—cosA)/2)

  cos(A/2)=√((1+cosA)/2)cos(A/2)=—√((1+cosA)/2)

  tan(A/2)=√((1—cosA)/((1+cosA))tan(A/2)=—√((1—cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1—cosA))ctg(A/2)=—√((1+cosA)/((1—cosA))

  和差化積

  2sinAcosB=sin(A+B)+sin(A—B)2cosAsinB=sin(A+B)—sin(A—B)

  2cosAcosB=cos(A+B)—sin(A—B)—2sinAsinB=cos(A+B)—cos(A—B)

  sinA+sinB=2sin((A+B)/2)cos((A—B)/2cosA+cosB=2cos((A+B)/2)sin((A—B)/2)

  tanA+tanB=sin(A+B)/cosAcosBtanA—tanB=sin(A—B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB—ctgA+ctgBsin(A+B)/sinAsinB

橢圓知識點(diǎn)總結3

 、偶吓c簡(jiǎn)易邏輯:集合的概念與運算、簡(jiǎn)易邏輯、充要條件

 、坪瘮担河成渑c函數、函數解析式與定義域、值域與最值、反函數、三大性質(zhì)、函數圖象、指數與指數函數、對數與對數函數、函數的應用

 、菙盗校簲盗械挠嘘P(guān)概念、等差數列、等比數列、數列求和、數列的應用

 、热呛瘮担河嘘P(guān)概念、同角關(guān)系與誘導公式、和、差、倍、半公式、求值、化簡(jiǎn)、證明、三角函數的圖象與性質(zhì)、三角函數的應用

 、善矫嫦蛄浚河嘘P(guān)概念與初等運算、坐標運算、數量積及其應用

 、什坏仁剑焊拍钆c性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的`應用

 、酥本(xiàn)和圓的方程:直線(xiàn)的方程、兩直線(xiàn)的位置關(guān)系、線(xiàn)性規劃、圓、直線(xiàn)與圓的位置關(guān)系

 、虉A錐曲線(xiàn)方程:橢圓、雙曲線(xiàn)、拋物線(xiàn)、直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系、軌跡問(wèn)題、圓錐曲線(xiàn)的應用

 、闻帕、組合和概率:排列、組合應用題、二項式定理及其應用

 、细怕逝c統計:概率、分布列、期望、方差、抽樣、正態(tài)分布

 、袑担簩档母拍、求導、導數的應用

 、褟蛿担簭蛿档母拍钆c運算

橢圓知識點(diǎn)總結4

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑

  余弦定理b2=a2+c2—2accosB注:角B是邊a和邊c的夾角

  圓的標準方程(x—a)2+(y—b)2=r2注:(a,b)是圓心坐標

  圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2—4F>0

  拋物線(xiàn)標準方程y2=2pxy2=—2pxx2=2pyx2=—2py

  直棱柱側面積S=c*h斜棱柱側面積S=c'*h

  正棱錐側面積S=1/2c*h'正棱臺側面積S=1/2(c+c')h'

  圓臺側面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi*r2

  圓柱側面積S=c*h=2pi*h圓錐側面積S=1/2*c*l=pi*r*l

  弧長(cháng)公式l=a*ra是圓心角的'弧度數r>0扇形面積公式s=1/2*l*r

  錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h

  斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側棱長(cháng)

  柱體體積公式V=s*h圓柱體V=p*r2h

  乘法與因式分a2—b2=(a+b)(a—b)a3+b3=(a+b)(a2—ab+b2)a3—b3=(a—b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a—b|≤|a|+|b||a|≤b<=>—b≤a≤b

  |a—b|≥|a|—|b|—|a|≤a≤|a|

  一元二次方程的解—b+√(b2—4ac)/2a—b—√(b2—4ac)/2a

  根與系數的關(guān)系X1+X2=—b/aX1*X2=c/a注:韋達定理

  判別式

  b2—4ac=0注:方程有兩個(gè)相等的實(shí)根

  b2—4ac>0注:方程有兩個(gè)不等的實(shí)根

  b2—4ac<0注:方程沒(méi)有實(shí)根,有共軛復數根

【橢圓知識點(diǎn)總結】相關(guān)文章:

數學(xué)橢圓知識點(diǎn)歸納總結06-08

高考知識點(diǎn)總結12-23

高考知識點(diǎn)總結08-19

壓強知識點(diǎn)總結07-20

過(guò)秦論知識點(diǎn)總結06-29

語(yǔ)文知識點(diǎn)總結04-27

語(yǔ)文知識點(diǎn)總結08-26

浮力知識點(diǎn)總結12-28

物理知識點(diǎn)總結11-19

99久久精品免费看国产一区二区三区|baoyu135国产精品t|40分钟97精品国产最大网站|久久综合丝袜日本网|欧美videosdesexo肥婆