高中數學(xué)單元教學(xué)設計(合集)
作為一名人民教師,總不可避免地需要編寫(xiě)教學(xué)設計,教學(xué)設計是根據課程標準的要求和教學(xué)對象的特點(diǎn),將教學(xué)諸要素有序安排,確定合適的教學(xué)方案的設想和計劃。我們該怎么去寫(xiě)教學(xué)設計呢?下面是小編幫大家整理的高中數學(xué)單元教學(xué)設計,歡迎閱讀,希望大家能夠喜歡。
高中數學(xué)單元教學(xué)設計1
【教學(xué)目的】
。1)使學(xué)生初步理解集合的概念,知道常用數集的概念及記法
。2)使學(xué)生初步了解“屬于”關(guān)系的意義
。3)使學(xué)生初步了解有限集、無(wú)限集、空集的意義
【重點(diǎn)難點(diǎn)】
教學(xué)重點(diǎn):集合的基本概念及表示方法
教學(xué)難點(diǎn):運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡(jiǎn)單的集合
授課類(lèi)型:新授課
課時(shí)安排:1課時(shí)
教具:多媒體、實(shí)物投影儀
【內容分析】
1、集合是中學(xué)數學(xué)的一個(gè)重要的基本概念在小學(xué)數學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應用集合的語(yǔ)言表述一些問(wèn)題例如,在代數中用到的有數集、解集等;在幾何中用到的有點(diǎn)集至于邏輯,可以說(shuō),從開(kāi)始學(xué)習數學(xué)就離不開(kāi)對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學(xué)習、工作中,也是認識問(wèn)題、研究問(wèn)題不可缺少的工具這些可以幫助學(xué)生認識學(xué)習本章的意義,也是本章學(xué)習的基礎
把集合的初步知識與簡(jiǎn)易邏輯知識安排在高中數學(xué)的`最開(kāi)始,是因為在高中數學(xué)中,這些知識與其他內容有著(zhù)密切聯(lián)系,它們是學(xué)習、掌握和使用數學(xué)語(yǔ)言的基礎例如,下一章講函數的概念與性質(zhì),就離不開(kāi)集合與邏輯
本節首先從初中代數與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結合實(shí)例對集合的概念作了說(shuō)明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫(huà)圖表示集合的例子
這節課主要學(xué)習全章的引言和集合的基本概念學(xué)習引言是引發(fā)學(xué)生的學(xué)習興趣,使學(xué)生認識學(xué)習本章的意義本節課的教學(xué)重點(diǎn)是集合的基本概念
集合是集合論中的原始的、不定義的概念在開(kāi)始接觸集合的概念時(shí),主要還是通過(guò)實(shí)例,對概念有一個(gè)初步認識教科書(shū)給出的“一般地,某些指定的對象集在一起就成為一個(gè)集合,也簡(jiǎn)稱(chēng)集”這句話(huà),只是對集合概念的描述性說(shuō)明
【教學(xué)過(guò)程】
一、復習引入:
1、簡(jiǎn)介數集的發(fā)展,復習最大公約數和最小公倍數,質(zhì)數與和數;
2、教材中的章頭引言;
3、集合論的創(chuàng )始人——康托爾(德國數學(xué)家)(見(jiàn)附錄);
4、“物以類(lèi)聚”,“人以群分”;
5、教材中例子(P4)
二、講解新課:
閱讀教材第一部分,問(wèn)題如下:
。1)有那些概念?是如何定義的?
。2)有那些符號?是如何表示的?
。3)集合中元素的特性是什么?
。ㄒ唬┘系挠嘘P(guān)概念:
由一些數、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的。我們說(shuō),每一組對象的全體形成一個(gè)集合,或者說(shuō),某些指定的對象集在一起就成為一個(gè)集合,也簡(jiǎn)稱(chēng)集。集合中的每個(gè)對象叫做這個(gè)集合的元素。
定義:一般地,某些指定的對象集在一起就成為一個(gè)集合。
1、集合的概念
。1)集合:某些指定的對象集在一起就形成一個(gè)集合(簡(jiǎn)稱(chēng)集)
。2)元素:集合中每個(gè)對象叫做這個(gè)集合的元素
2、常用數集及記法
。1)非負整數集(自然數集):全體非負整數的集合記作N,(2)正整數集:非負整數集內排除0的集記作Nx或N+
。3)整數集:全體整數的集合記作Z,(4)有理數集:全體有理數的集合記作Q,(5)實(shí)數集:全體實(shí)數的集合記作R
注:(1)自然數集與非負整數集是相同的,也就是說(shuō),自然數集包括數0
。2)非負整數集內排除0的集記作Nx或N+Q、Z、R等其它數集內排除0的集,也是這樣表示,例如,整數集內排除0的集,表示成Zx
3、元素對于集合的隸屬關(guān)系
。1)屬于:如果a是集合A的元素,就說(shuō)a屬于A(yíng),記作a∈A
。2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A(yíng),記作
4、集合中元素的特性
。1)確定性:按照明確的判斷標準給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可
。2)互異性:集合中的元素沒(méi)有重復
。3)無(wú)序性:集合中的元素沒(méi)有一定的順序(通常用正常的順序寫(xiě)出)
5、⑴集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫(xiě)的拉丁字母表示,如a、b、c、p、q……
、啤啊省钡拈_(kāi)口方向,不能把a∈A顛倒過(guò)來(lái)寫(xiě)
三、練習題:
1、教材P5練習1、2
2、下列各組對象能確定一個(gè)集合嗎?
。1)所有很大的實(shí)數(不確定)
。2)好心的人(不確定)
(3)1,2,2,3,4,5、(有重復)
3、設a,b是非零實(shí)數,那么可能取的值組成集合的元素是-2,0,2
4、由實(shí)數x,-x,|x|,所組成的集合,最多含(A)
(A)2個(gè)元素(B)3個(gè)元素(C)4個(gè)元素(D)5個(gè)元素
5、設集合G中的元素是所有形如a+b(a∈Z,b∈Z)的數,求證:
。1)當x∈N時(shí),x∈G;
。2)若x∈G,y∈G,則x+y∈G,而不一定屬于集合G
證明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,則x=x+0x=a+b∈G,即x∈G
證明(2):∵x∈G,y∈G,∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)
∴x+y=(a+b)+(c+d)=(a+c)+(b+d)
∵a∈Z,b∈Z,c∈Z,d∈Z
∴(a+c)∈Z,(b+d)∈Z
∴x+y=(a+c)+(b+d)∈G,又∵=且不一定都是整數,∴=不一定屬于集合G
【小結】
1、集合的有關(guān)概念:(集合、元素、屬于、不屬于)
2、集合元素的性質(zhì):確定性,互異性,無(wú)序性
3、常用數集的定義及記法
高中數學(xué)單元教學(xué)設計2
一、目標
1、知識與技能
。1)理解流程圖的順序結構和選擇結構。
。2)能用字語(yǔ)言表示算法,并能將算法用順序結構和選擇結構表示簡(jiǎn)單的流程圖
2、過(guò)程與方法
學(xué)生通過(guò)模仿、操作、探索、經(jīng)歷設計流程圖表達解決問(wèn)題的過(guò)程,理解流程圖的結構。
3、情感、態(tài)度與價(jià)值觀(guān)
學(xué)生通過(guò)動(dòng)手作圖,用自然語(yǔ)言表示算法,用圖表示算法。進(jìn)一步體會(huì )算法的基本思想——程序化思想,在歸納概括中培養學(xué)生的邏輯思維能力。
二、重點(diǎn)、難點(diǎn)
重點(diǎn):算法的順序結構與選擇結構。
難點(diǎn):用含有選擇結構的流程圖表示算法。
三、學(xué)法與教學(xué)用具
學(xué)法:學(xué)生通過(guò)動(dòng)手作圖,用自然語(yǔ)言表示算法,用圖表示算法,體會(huì )到用流程圖表示算法,簡(jiǎn)潔、清晰、直觀(guān)、便于檢查,經(jīng)歷設計流程圖表達解決問(wèn)題的過(guò)程。進(jìn)而學(xué)習順序結構和選擇結構表示簡(jiǎn)單的流程圖。
教學(xué)用具:尺規作圖工具,多媒體。
四、教學(xué)思路
。ㄒ唬、問(wèn)題引入揭示題
例1尺規作圖,確定線(xiàn)段的一個(gè)5等分點(diǎn)。
要求:同桌一人作圖,一人寫(xiě)算法,并請學(xué)生說(shuō)出答案。
提問(wèn):用字語(yǔ)言寫(xiě)出算法有何感受?
引導學(xué)生體驗到:顯得冗長(cháng),不方便、不簡(jiǎn)潔。
教師說(shuō)明:為了使算法的.表述簡(jiǎn)潔、清晰、直觀(guān)、便于檢查,我們今天學(xué)習用一些通用圖型符號構成一張圖即流程圖表示算法。
本節要學(xué)習的是順序結構與選擇結構。
右圖即是同流程圖表示的算法。
。ǘ、觀(guān)察類(lèi)比理解題
1、投影介紹流程圖的符號、名稱(chēng)及功能說(shuō)明。
符號符號名稱(chēng)功能說(shuō)明
終端框算法開(kāi)始與結束
處理框算法的各種處理操作
判斷框算法的各種轉移
輸入輸出框輸入輸出操作
指向線(xiàn)指向另一操作
2、講授順序結構及選擇結構的概念及流程圖
。1)順序結構
依照步驟依次執行的一個(gè)算法
流程圖:
。2)選擇結構
對條進(jìn)行判斷決定后面的步驟的結構
流程圖:
3、用自然語(yǔ)言表示算法與用流程圖表示算法的比較
。1)半徑為r的圓的面積公式當r=10時(shí)寫(xiě)出計算圓的面積的算法,并畫(huà)出流程圖。
解:
算法(自然語(yǔ)言)
、侔10賦與r
、谟霉角髎
、圯敵鰏
流程圖
。2)已知函數對于每輸入一個(gè)X值都得到相應的函數值,寫(xiě)出算法并畫(huà)流程圖。
算法:(語(yǔ)言表示)
、佥斎隭值
、谂袛郮的范圍,若,用函數Y=x+1求函數值;否則用Y=2-x求函數值
、圯敵鯵的值
流程圖
小結:含有數學(xué)中需要分類(lèi)討論的或與分段函數有關(guān)的問(wèn)題,均要用到選擇結構。
學(xué)生觀(guān)察、類(lèi)比、說(shuō)出流程圖與自然語(yǔ)言對比有何特點(diǎn)?(直觀(guān)、清楚、便于檢查和交流)
。ㄈ┠7虏僮鹘(jīng)歷題
1、用流程圖表示確定線(xiàn)段A、B的一個(gè)16等分點(diǎn)
2、分析講解例2;
分析:
思考:有多少個(gè)選擇結構?相應的流程圖應如何表示?
流程圖:
。ㄋ模w納小結鞏固題
1、順序結構和選擇結構的模式是怎樣的?
2、怎樣用流程圖表示算法。
。ㄎ澹┚毩昉992
。┳鳂I(yè)P991
高中數學(xué)單元教學(xué)設計3
一、單元教學(xué)內容
。ǎ保┧惴ǖ幕靖拍
。ǎ玻┧惴ǖ幕窘Y構:順序、條件、循環(huán)結構
。ǎ常┧惴ǖ幕菊Z(yǔ)句:輸入、輸出、賦值、條件、循環(huán)語(yǔ)句
二、單元教學(xué)內容分析
算法是數學(xué)及其應用的重要組成部分,是計算科學(xué)的重要基礎。隨著(zhù)現代信息技術(shù)飛速發(fā)展,算法在科學(xué)技術(shù)、社會(huì )發(fā)展中發(fā)揮著(zhù)越來(lái)越大的作用,并日益融入社會(huì )生活的許多方面,算法思想已經(jīng)成為現代人應具備的一種數學(xué)素養。需要特別指出的是,中國古代數學(xué)中蘊涵了豐富的算法思想。在本模塊中,學(xué)生將在中學(xué)教育階段初步感受算法思想的基礎上,結合對具體數學(xué)實(shí)例的分析,體驗程序框圖在解決問(wèn)題中的作用;通過(guò)模仿、操作、探索,學(xué)習設計程序框圖表達解決問(wèn)題的過(guò)程;體會(huì )算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達的能力,提高邏輯思維能力
三、單元教學(xué)課時(shí)安排:
。、算法的基本概念3課時(shí)
。、程序框圖與算法的基本結構5課時(shí)
。、算法的基本語(yǔ)句2課時(shí)
四、單元教學(xué)目標分析
。、通過(guò)對解決具體問(wèn)題過(guò)程與步驟的分析體會(huì )算法的思想,了解算法的含義
。、通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設計程序框圖表達解決問(wèn)題的過(guò)程。在具體問(wèn)題的解決過(guò)程中理解程序框圖的三種基本邏輯結構:順序、條件、循環(huán)結構。
。、經(jīng)歷將具體問(wèn)題的程序框圖轉化為程序語(yǔ)句的過(guò)程,理解幾種基本算法語(yǔ)句:輸入、輸出、斌值、條件、循環(huán)語(yǔ)句,進(jìn)一步體會(huì )算法的基本思想。
。、通過(guò)閱讀中國古代數學(xué)中的算法案例,體會(huì )中國古代數學(xué)對世界數學(xué)發(fā)展的貢獻。
五、單元教學(xué)重點(diǎn)與難點(diǎn)分析
。、重點(diǎn)
。ǎ保├斫馑惴ǖ暮x
。ǎ玻┱莆账惴ǖ幕窘Y構
。ǎ常⿻(huì )用算法語(yǔ)句解決簡(jiǎn)單的實(shí)際問(wèn)題
。、難點(diǎn)
。ǎ保┏绦蚩驁D
。ǎ玻┳兞颗c賦值
。ǎ常┭h(huán)結構
。ǎ矗┧惴ㄔO計
六、單元總體教學(xué)方法
本章教學(xué)采用啟發(fā)式教學(xué),輔以觀(guān)察法、發(fā)現法、練習法、講解法。采用這些方法的原因是學(xué)生的邏輯能力不是很強,只能通過(guò)對實(shí)例的.認真領(lǐng)會(huì )及一定的練習才能掌握本節知識。
七、單元展開(kāi)方式與特點(diǎn)
。、展開(kāi)方式
自然語(yǔ)言→程序框圖→算法語(yǔ)句
。、特點(diǎn)
。ǎ保┞菪仙謱舆f進(jìn)
。ǎ玻┱蠞B透前呼后應
。ǎ常┤(xiàn)合一橫向貫通
。ǎ矗⿵椥蕴幚矶鄻舆x擇
八、單元教學(xué)過(guò)程分析
1、算法基本概念教學(xué)過(guò)程分析
對生活中的實(shí)際問(wèn)題通過(guò)對解決具體問(wèn)題過(guò)程與步驟的分析(喝茶,如二元一次方程組求解問(wèn)題),體會(huì )算法的思想,了解算法的含義,能用自然語(yǔ)言描述算法。
2、算法的流程圖教學(xué)過(guò)程分析
對生活中的實(shí)際問(wèn)題通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設計流程圖表達解決問(wèn)題的過(guò)程,了解算法和程序語(yǔ)言的區別;在具體問(wèn)題的解決過(guò)程中,理解流程圖的三種基本邏輯結構:順序、條件分支、循環(huán),會(huì )用流程圖表示算法。
3、基本算法語(yǔ)句教學(xué)過(guò)程分析
經(jīng)歷將具體生活中問(wèn)題的流程圖轉化為程序語(yǔ)言的過(guò)程,理解表示的幾種基本算法語(yǔ)句:賦值語(yǔ)句、輸入語(yǔ)句、輸出語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句,進(jìn)一步體會(huì )算法的基本思想。能用自然語(yǔ)言、流程圖和基本算法語(yǔ)句表達算法,4、通過(guò)閱讀中國古代數學(xué)中的算法案例,體會(huì )中國古代數學(xué)對世界數學(xué)發(fā)展的貢獻。
九、單元評價(jià)設想
1、重視對學(xué)生數學(xué)學(xué)習過(guò)程的評價(jià)
關(guān)注學(xué)生在數學(xué)語(yǔ)言的學(xué)習過(guò)程中,是否對用集合語(yǔ)言描述數學(xué)和現實(shí)生活中的問(wèn)題充滿(mǎn)興趣;在學(xué)習過(guò)程中,能否體會(huì )集合語(yǔ)言準確、簡(jiǎn)潔的特征;是否能積極、主動(dòng)地發(fā)展自己運用數學(xué)語(yǔ)言進(jìn)行交流的能力。
2、正確評價(jià)學(xué)生的數學(xué)基礎知識和基本技能
關(guān)注學(xué)生在本章(節)及今后學(xué)習中,讓學(xué)生集中學(xué)習算法的初步知識,主要包括算法的基本結構、基本語(yǔ)句、基本思想等。算法思想將貫穿高中數學(xué)課程的相關(guān)部分,在其他相關(guān)部分還將進(jìn)一步學(xué)習算法
高中數學(xué)單元教學(xué)設計4
一、單元教學(xué)內容
(1)算法的基本概念
(2)算法的基本結構:順序、條件、循環(huán)結構
(3)算法的基本語(yǔ)句:輸入、輸出、賦值、條件、循環(huán)語(yǔ)句
二、單元教學(xué)內容分析
算法是數學(xué)及其應用的重要組成部分,是計算科學(xué)的重要基礎。隨著(zhù)現代信息技術(shù)飛速發(fā)展,算法在科學(xué)技術(shù)、社會(huì )發(fā)展中發(fā)揮著(zhù)越來(lái)越大的作用,并日益融入社會(huì )生活的許多方面,算法思想已經(jīng)成為現代人應具備的一種數學(xué)素養。需要特別指出的是,中國古代數學(xué)中蘊涵了豐富的算法思想。在本模塊中,學(xué)生將在中學(xué)教育階段初步感受算法思想的基礎上,結合對具體數學(xué)實(shí)例的分析,體驗程序框圖在解決問(wèn)題中的作用;通過(guò)模仿、操作、探索,學(xué)習設計程序框圖表達解決問(wèn)題的過(guò)程;體會(huì )算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達的能力,提高邏輯思維能力。
三、單元教學(xué)課時(shí)安排:
1、算法的基本概念3課時(shí)
2、程序框圖與算法的基本結構5課時(shí)
3、算法的'基本語(yǔ)句2課時(shí)
四、單元教學(xué)目標分析
1、通過(guò)對解決具體問(wèn)題過(guò)程與步驟的分析體會(huì )算法的思想,了解算法的含義
2、通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設計程序框圖表達解決問(wèn)題的過(guò)程。在具體問(wèn)題的解決過(guò)程中理解程序框圖的三種基本邏輯結構:順序、條件、循環(huán)結構。
3、經(jīng)歷將具體問(wèn)題的程序框圖轉化為程序語(yǔ)句的過(guò)程,理解幾種基本算法語(yǔ)句:輸入、輸出、斌值、條件、循環(huán)語(yǔ)句,進(jìn)一步體會(huì )算法的基本思想。
4、通過(guò)閱讀中國古代數學(xué)中的算法案例,體會(huì )中國古代數學(xué)對世界數學(xué)發(fā)展的貢獻。
五、單元教學(xué)重點(diǎn)與難點(diǎn)分析
1、重點(diǎn)
(1)理解算法的含義
(2)掌握算法的基本結構
(3)會(huì )用算法語(yǔ)句解決簡(jiǎn)單的實(shí)際問(wèn)題
2、難點(diǎn)
(1)程序框圖
(2)變量與賦值
(3)循環(huán)結構
(4)算法設計
六、單元總體教學(xué)方法
本章教學(xué)采用啟發(fā)式教學(xué),輔以觀(guān)察法、發(fā)現法、練習法、講解法。采用這些方法的原因是學(xué)生的邏輯能力不是很強,只能通過(guò)對實(shí)例的認真領(lǐng)會(huì )及一定的練習才能掌握本節知識。
七、單元展開(kāi)方式與特點(diǎn)
1、展開(kāi)方式
自然語(yǔ)言→程序框圖→算法語(yǔ)句
2、特點(diǎn)
(1)螺旋上升分層遞進(jìn)
(2)整合滲透前呼后應
(3)三線(xiàn)合一橫向貫通
(4)彈性處理多樣選擇
八、單元教學(xué)過(guò)程分析
1、算法基本概念教學(xué)過(guò)程分析
對生活中的實(shí)際問(wèn)題通過(guò)對解決具體問(wèn)題過(guò)程與步驟的分析(喝茶,如二元一次方程組求解問(wèn)題),體會(huì )算法的思想,了解算法的含義,能用自然語(yǔ)言描述算法。
2、算法的流程圖教學(xué)過(guò)程分析
對生活中的實(shí)際問(wèn)題通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設計流程圖表達解決問(wèn)題的過(guò)程,了解算法和程序語(yǔ)言的區別;在具體問(wèn)題的解決過(guò)程中,理解流程圖的三種基本邏輯結構:順序、條件分支、循環(huán),會(huì )用流程圖表示算法。
3、基本算法語(yǔ)句教學(xué)過(guò)程分析
經(jīng)歷將具體生活中問(wèn)題的流程圖轉化為程序語(yǔ)言的過(guò)程,理解表示的幾種基本算法語(yǔ)句:賦值語(yǔ)句、輸入語(yǔ)句、輸出語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句,進(jìn)一步體會(huì )算法的基本思想。能用自然語(yǔ)言、流程圖和基本算法語(yǔ)句表達算法,4、通過(guò)閱讀中國古代數學(xué)中的算法案例,體會(huì )中國古代數學(xué)對世界數學(xué)發(fā)展的貢獻。
九、單元評價(jià)設想
1、重視對學(xué)生數學(xué)學(xué)習過(guò)程的評價(jià)
關(guān)注學(xué)生在數學(xué)語(yǔ)言的學(xué)習過(guò)程中,是否對用集合語(yǔ)言描述數學(xué)和現實(shí)生活中的問(wèn)題充滿(mǎn)興趣;在學(xué)習過(guò)程中,能否體會(huì )集合語(yǔ)言準確、簡(jiǎn)潔的特征;是否能積極、主動(dòng)地發(fā)展自己運用數學(xué)語(yǔ)言進(jìn)行交流的能力。
2、正確評價(jià)學(xué)生的數學(xué)基礎知識和基本技能
關(guān)注學(xué)生在本章(節)及今后學(xué)習中,讓學(xué)生集中學(xué)習算法的初步知識,主要包括算法的基本結構、基本語(yǔ)句、基本思想等。算法思想將貫穿高中數學(xué)課程的相關(guān)部分,在其他相關(guān)部分還將進(jìn)一步學(xué)習算法
高中數學(xué)單元教學(xué)設計5
重點(diǎn)難點(diǎn)教學(xué):
1、正確理解映射的概念;
2、函數相等的兩個(gè)條件;
3、求函數的定義域和值域。
教學(xué)過(guò)程:
1、使學(xué)生熟練掌握函數的概念和映射的定義;
2、使學(xué)生能夠根據已知條件求出函數的定義域和值域;3、使學(xué)生掌握函數的三種表示方法。
教學(xué)內容:
1、函數的定義
設A、B是兩個(gè)非空的數集,如果按照某種確定的對應關(guān)系f,使對于集合A中的"任意一個(gè)數x,在集合B中都有唯一確定的數fx和它對應,那么稱(chēng):fAB?為從集合A到集合B的一個(gè)函數(function),記作:,yfA其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數值,函數值的集合{|}fA?叫值域(range)。顯然,值域是集合B的子集。
注意:
、佟皔=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;
、诤瘮捣枴皔=f(x)”中的f(x)表示與x對應的函數值,一個(gè)數,而不是f乘x、
2、構成函數的三要素定義域、對應關(guān)系和值域。
3、映射的定義
設A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的.元素y與之對應,那么就稱(chēng)對應f:A→B為從集合A到集合B的一個(gè)映射。
4、區間及寫(xiě)法:
設a、b是兩個(gè)實(shí)數,且a
(1)滿(mǎn)足不等式axb的實(shí)數x的集合叫做閉區間,表示為[a,b];
(2)滿(mǎn)足不等式axb的實(shí)數x的集合叫做開(kāi)區間,表示為(a,b);
5、函數的三種表示方法
、俳馕龇
、诹斜矸
、蹐D像法
高中數學(xué)單元教學(xué)設計6
一、教材
《直線(xiàn)與圓的位置關(guān)系》是高中人教版必修2第四章第二節的內容,直線(xiàn)和圓的位置關(guān)系是本章的重點(diǎn)內容之一。從知識體系上看,它既是點(diǎn)與圓的位置關(guān)系的延續與提高,又是學(xué)習切線(xiàn)的判定定理、圓與圓的位置關(guān)系的基礎。從數學(xué)思想方法層面上看它運用運動(dòng)變化的觀(guān)點(diǎn)揭示了知識的發(fā)生過(guò)程以及相關(guān)知識間的內在聯(lián)系,滲透了數形結合、分類(lèi)討論、類(lèi)比、化歸等數學(xué)思想方法,有助于提高學(xué)生的思維品質(zhì)。
二、學(xué)情
學(xué)生初中已經(jīng)接觸過(guò)直線(xiàn)與圓相交、相切、相離的定義和判定;且在上節的學(xué)習過(guò)程中掌握了點(diǎn)的坐標、直線(xiàn)的方程、圓的方程以及點(diǎn)到直線(xiàn)的距離公式;掌握利用方程組的方法來(lái)求直線(xiàn)的交點(diǎn);具有用坐標法研究點(diǎn)與圓的位置關(guān)系的基礎;具有一定的數形結合解題思想的基礎。
三、教學(xué)目標
(一)知識與技能目標
能夠準確用圖形表示出直線(xiàn)與圓的三種位置關(guān)系;可以利用聯(lián)立方程的方法和求點(diǎn)到直線(xiàn)的距離的方法簡(jiǎn)單判斷出直線(xiàn)與圓的關(guān)系。
(二)過(guò)程與方法目標
經(jīng)歷操作、觀(guān)察、探索、總結直線(xiàn)與圓的位置關(guān)系的判斷方法,從而鍛煉觀(guān)察、比較、概括的邏輯思維能力。
(三)情感態(tài)度價(jià)值觀(guān)目標
激發(fā)求知欲和學(xué)習興趣,鍛煉積極探索、發(fā)現新知識、總結規律的能力,解題時(shí)養成歸納總結的良好習慣。
四、教學(xué)重難點(diǎn)
(一)重點(diǎn)
用解析法研究直線(xiàn)與圓的位置關(guān)系。
(二)難點(diǎn)
體會(huì )用解析法解決問(wèn)題的數學(xué)思想。
五、教學(xué)方法
根據本節課教材內容的特點(diǎn),為了更直觀(guān)、形象地突出重點(diǎn),突破難點(diǎn),借助信息技術(shù)工具,以幾何畫(huà)板為平臺,通過(guò)圖形的動(dòng)態(tài)演示,變抽象為直觀(guān),為學(xué)生的數學(xué)探究與數學(xué)思維提供支持、在教學(xué)中采用小組合作學(xué)習的方式,這樣可以為不同認知基礎的學(xué)生提供學(xué)習機會(huì ),同時(shí)有利于發(fā)揮各層次學(xué)生的.作用,教師始終堅持啟發(fā)式教學(xué)原則,設計一系列問(wèn)題串,以引導學(xué)生的數學(xué)思維活動(dòng)。
六、教學(xué)過(guò)程
(一)導入新課
教師借助多媒體創(chuàng )設泰坦尼克號的情景,并從中抽象出數學(xué)模型:已知冰山的分布是一個(gè)半徑為r的圓形區域,圓心位于輪船正西的1處,問(wèn),輪船如何航行能夠避免撞到冰山呢?如何行駛便又會(huì )撞到冰山呢?
教師引導學(xué)生回顧初中已經(jīng)學(xué)習的直線(xiàn)與圓的位置關(guān)系,將所想到的航行路線(xiàn)轉化成數學(xué)簡(jiǎn)圖,即相交、相切、相離。
設計意圖:在已有的知識基礎上,提出新的問(wèn)題,有利于保持學(xué)生知識結構的連續性,同時(shí)開(kāi)闊視野,激發(fā)學(xué)生的學(xué)習興趣。
(二)新課教學(xué)——探究新知
教師提問(wèn)如何判斷直線(xiàn)與圓的位置關(guān)系,學(xué)生先獨立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學(xué)所想到的思路。在整個(gè)交流討論中,教師既要有對正確認識的贊賞,又要有對錯誤見(jiàn)解的分析及對該學(xué)生的鼓勵。
判斷方法:
(1)定義法:看直線(xiàn)與圓公共點(diǎn)個(gè)數
即研究方程組解的個(gè)數,具體做法是聯(lián)立兩個(gè)方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關(guān)系。
(2)比較法:圓心到直線(xiàn)的距離d與圓的半徑r做比較,(三)合作探究——深化新知
教師進(jìn)一步拋出疑問(wèn),對比兩種方法,由學(xué)生觀(guān)察實(shí)踐發(fā)現,兩種方法本質(zhì)相同,但比較法只適合于直線(xiàn)與圓,而定義法適用范圍更廣。教師展示較為基礎的題目,學(xué)生解答,總結思路。
已知直線(xiàn)3x+4y-5=0與圓x2+y2=1,判斷它們的位置關(guān)系?
讓學(xué)生自主探索,討論交流,并闡述自己的解題思路。
當已知了直線(xiàn)與圓的方程之后,圓心坐標和半徑r易得到,問(wèn)題的關(guān)鍵是如何得到圓心到直線(xiàn)的距離d,他的本質(zhì)是點(diǎn)到直線(xiàn)的距離,便可以直接利用點(diǎn)到直線(xiàn)的距離公式求d。類(lèi)比前面所學(xué)利用直線(xiàn)方程求兩直線(xiàn)交點(diǎn)的方法,聯(lián)立直線(xiàn)與圓的方程,組成方程組,通過(guò)方程組解得個(gè)數確定直線(xiàn)與圓的交點(diǎn)個(gè)數,進(jìn)一步確定他們的位置關(guān)系。最后明確解題步驟。
(四)歸納總結——鞏固新知
為了將結論由特殊推廣到一般引導學(xué)生思考:
可由方程組的解的不同情況來(lái)判斷:
當方程組有兩組實(shí)數解時(shí),直線(xiàn)1與圓C相交;當方程組有一組實(shí)數解時(shí),直線(xiàn)1與圓C相切;當方程組沒(méi)有實(shí)數解時(shí),直線(xiàn)1與圓C相離。
活動(dòng):我將抽取兩位同學(xué)在黑板上扮演,并在巡視過(guò)程中對部分學(xué)生加以指導。最后對黑板上的兩名學(xué)生的解題過(guò)程加以分析完善。通過(guò)對基礎題的練習,鞏固兩種判斷直線(xiàn)與圓的位置關(guān)系判斷方法,并使每一個(gè)學(xué)生獲得后續學(xué)習的信心。
(五)小結作業(yè)
在小結環(huán)節,我會(huì )以口頭提問(wèn)的方式:
(1)這節課學(xué)習的主要內容是什么?
(2)在數學(xué)問(wèn)題的解決過(guò)程中運用了哪些數學(xué)思想?
設計意圖:?jiǎn)l(fā)式的課堂小結方式能讓學(xué)生主動(dòng)回顧本節課所學(xué)的知識點(diǎn)。也促使學(xué)生對知識網(wǎng)絡(luò )進(jìn)行主動(dòng)建構。
作業(yè):在學(xué)生回顧本堂學(xué)習內容明確兩種解題思路后,教師讓學(xué)生對比兩種解法,那種更簡(jiǎn)捷,明確本節課主要用比較d與r的關(guān)系來(lái)解決這類(lèi)問(wèn)題,對用方程組解的個(gè)數的判斷方法,要求學(xué)生課外做進(jìn)一步的探究,下一節課匯報。
【高中數學(xué)單元教學(xué)設計】相關(guān)文章:
高中數學(xué)單元教學(xué)設計06-19
音樂(lè )單元教學(xué)設計11-02
高中數學(xué)教學(xué)設計07-02
小學(xué)數學(xué)單元教學(xué)設計05-29
《單元練習1》教學(xué)設計04-03
《單元練習3》教學(xué)設計04-06
高中數學(xué)教學(xué)設計模板06-23
高中數學(xué)集合教學(xué)設計06-23
高中數學(xué)教學(xué)設計范文05-08