- 相關(guān)推薦
高中數學(xué)大單元教學(xué)設計
作為一名老師,時(shí)常需要編寫(xiě)教學(xué)設計,借助教學(xué)設計可以讓教學(xué)工作更加有效地進(jìn)行。我們該怎么去寫(xiě)教學(xué)設計呢?下面是小編收集整理的高中數學(xué)大單元教學(xué)設計,僅供參考,希望能夠幫助到大家。
高中數學(xué)大單元教學(xué)設計1
重點(diǎn)難點(diǎn)教學(xué):
1.正確理解映射的概念;
2.函數相等的兩個(gè)條件;
3.求函數的定義域和值域。
教學(xué)過(guò)程:
1.使學(xué)生熟練掌握函數的概念和映射的定義;
2.使學(xué)生能夠根據已知條件求出函數的定義域和值域;3.使學(xué)生掌握函數的三種表示方法。
教學(xué)內容:
1.函數的定義
設A、B是兩個(gè)非空的數集,如果按照某種確定的對應關(guān)系f,使對于集合A中的"任意一個(gè)數x,在集合B中都有唯一確定的數fx和它對應,那么稱(chēng):fAB?為從集合A到集合B的.一個(gè)函數(function),記作:,yfA其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數值,函數值的集合{|}fA?叫值域(range)。顯然,值域是集合B的子集。
注意:
、佟皔=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;
、诤瘮捣枴皔=f(x)”中的f(x)表示與x對應的函數值,一個(gè)數,而不是f乘x.
2.構成函數的三要素定義域、對應關(guān)系和值域。
3、映射的定義
設A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱(chēng)對應f:A→B為從集合A到集合B的一個(gè)映射。
4.區間及寫(xiě)法:
設a、b是兩個(gè)實(shí)數,且a
(1)滿(mǎn)足不等式axb的實(shí)數x的集合叫做閉區間,表示為[a,b];
(2)滿(mǎn)足不等式axb的實(shí)數x的集合叫做開(kāi)區間,表示為(a,b);
5.函數的三種表示方法
、俳馕龇
、诹斜矸
、蹐D像法
高中數學(xué)大單元教學(xué)設計2
一、單元教學(xué)內容
(1)算法的基本概念
(2)算法的基本結構:順序、條件、循環(huán)結構
(3)算法的基本語(yǔ)句:輸入、輸出、賦值、條件、循環(huán)語(yǔ)句
二、單元教學(xué)內容分析
算法是數學(xué)及其應用的重要組成部分,是計算科學(xué)的重要基礎。隨著(zhù)現代信息技術(shù)飛速發(fā)展,算法在科學(xué)技術(shù)、社會(huì )發(fā)展中發(fā)揮著(zhù)越來(lái)越大的作用,并日益融入社會(huì )生活的許多方面,算法思想已經(jīng)成為現代人應具備的一種數學(xué)素養。需要特別指出的是,中國古代數學(xué)中蘊涵了豐富的算法思想。在本模塊中,學(xué)生將在中學(xué)教育階段初步感受算法思想的基礎上,結合對具體數學(xué)實(shí)例的分析,體驗程序框圖在解決問(wèn)題中的作用;通過(guò)模仿、操作、探索,學(xué)習設計程序框圖表達解決問(wèn)題的過(guò)程;體會(huì )算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達的.能力,提高邏輯思維能力。
三、單元教學(xué)課時(shí)安排:
1、算法的基本概念3課時(shí)
2、程序框圖與算法的基本結構5課時(shí)
3、算法的基本語(yǔ)句2課時(shí)
四、單元教學(xué)目標分析
1、通過(guò)對解決具體問(wèn)題過(guò)程與步驟的分析體會(huì )算法的思想,了解算法的含義
2、通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設計程序框圖表達解決問(wèn)題的過(guò)程。在具體問(wèn)題的解決過(guò)程中理解程序框圖的三種基本邏輯結構:順序、條件、循環(huán)結構。
3、經(jīng)歷將具體問(wèn)題的程序框圖轉化為程序語(yǔ)句的過(guò)程,理解幾種基本算法語(yǔ)句:輸入、輸出、斌值、條件、循環(huán)語(yǔ)句,進(jìn)一步體會(huì )算法的基本思想。
4、通過(guò)閱讀中國古代數學(xué)中的算法案例,體會(huì )中國古代數學(xué)對世界數學(xué)發(fā)展的貢獻。
五、單元教學(xué)重點(diǎn)與難點(diǎn)分析
1、重點(diǎn)
(1)理解算法的含義
(2)掌握算法的基本結構
(3)會(huì )用算法語(yǔ)句解決簡(jiǎn)單的實(shí)際問(wèn)題
2、難點(diǎn)
(1)程序框圖
(2)變量與賦值
(3)循環(huán)結構
(4)算法設計
六、單元總體教學(xué)方法
本章教學(xué)采用啟發(fā)式教學(xué),輔以觀(guān)察法、發(fā)現法、練習法、講解法。采用這些方法的原因是學(xué)生的邏輯能力不是很強,只能通過(guò)對實(shí)例的認真領(lǐng)會(huì )及一定的練習才能掌握本節知識。
七、單元展開(kāi)方式與特點(diǎn)
1、展開(kāi)方式
自然語(yǔ)言→程序框圖→算法語(yǔ)句
2、特點(diǎn)
(1)螺旋上升分層遞進(jìn)
(2)整合滲透前呼后應
(3)三線(xiàn)合一橫向貫通
(4)彈性處理多樣選擇
八、單元教學(xué)過(guò)程分析
1、算法基本概念教學(xué)過(guò)程分析
對生活中的實(shí)際問(wèn)題通過(guò)對解決具體問(wèn)題過(guò)程與步驟的分析(喝茶,如二元一次方程組求解問(wèn)題),體會(huì )算法的思想,了解算法的含義,能用自然語(yǔ)言描述算法。
2、算法的流程圖教學(xué)過(guò)程分析
對生活中的實(shí)際問(wèn)題通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設計流程圖表達解決問(wèn)題的過(guò)程,了解算法和程序語(yǔ)言的區別;在具體問(wèn)題的解決過(guò)程中,理解流程圖的三種基本邏輯結構:順序、條件分支、循環(huán),會(huì )用流程圖表示算法。
3、基本算法語(yǔ)句教學(xué)過(guò)程分析
經(jīng)歷將具體生活中問(wèn)題的流程圖轉化為程序語(yǔ)言的過(guò)程,理解表示的幾種基本算法語(yǔ)句:賦值語(yǔ)句、輸入語(yǔ)句、輸出語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句,進(jìn)一步體會(huì )算法的基本思想。能用自然語(yǔ)言、流程圖和基本算法語(yǔ)句表達算法,4、通過(guò)閱讀中國古代數學(xué)中的算法案例,體會(huì )中國古代數學(xué)對世界數學(xué)發(fā)展的貢獻。
九、單元評價(jià)設想
1、重視對學(xué)生數學(xué)學(xué)習過(guò)程的評價(jià)
關(guān)注學(xué)生在數學(xué)語(yǔ)言的學(xué)習過(guò)程中,是否對用集合語(yǔ)言描述數學(xué)和現實(shí)生活中的問(wèn)題充滿(mǎn)興趣;在學(xué)習過(guò)程中,能否體會(huì )集合語(yǔ)言準確、簡(jiǎn)潔的特征;是否能積極、主動(dòng)地發(fā)展自己運用數學(xué)語(yǔ)言進(jìn)行交流的能力。
2、正確評價(jià)學(xué)生的數學(xué)基礎知識和基本技能
關(guān)注學(xué)生在本章(節)及今后學(xué)習中,讓學(xué)生集中學(xué)習算法的初步知識,主要包括算法的基本結構、基本語(yǔ)句、基本思想等。算法思想將貫穿高中數學(xué)課程的相關(guān)部分,在其他相關(guān)部分還將進(jìn)一步學(xué)習算法
高中數學(xué)大單元教學(xué)設計3
一、課題:
人教版全日制普通高級中學(xué)教科書(shū)數學(xué)第一冊(上)《2.7對數》
二、指導思想與理論依據:
《數學(xué)課程標準》指出:高中數學(xué)課程應講清一些基本內容的實(shí)際背景和應用價(jià)值,開(kāi)展“數學(xué)建!钡膶W(xué)習活動(dòng),把數學(xué)的應用自然地融合在平常的教學(xué)中。任何一個(gè)數學(xué)概念的引入,總有它的現實(shí)或數學(xué)理論發(fā)展的需要。都應強調它的現實(shí)背景、數學(xué)理論發(fā)展背景或數學(xué)發(fā)展歷史上的背景,這樣才能使教學(xué)內容顯得自然和親切,讓學(xué)生感到知識的發(fā)展水到渠成而不是強加于人,從而有利于學(xué)生認識數學(xué)內容的實(shí)際背景和應用的價(jià)值。在教學(xué)設計時(shí),既要關(guān)注學(xué)生在數學(xué)情感態(tài)度和科學(xué)價(jià)值觀(guān)方面的發(fā)展,也要幫助學(xué)生理解和掌握數學(xué)基礎知識和基本技能,發(fā)展能力。在課程實(shí)施中,應結合教學(xué)內容介紹一些對數學(xué)發(fā)展起重大作用的歷史事件和人物,用以反映數學(xué)在人類(lèi)社會(huì )進(jìn)步、人類(lèi)文化建設中的作用,同時(shí)反映社會(huì )發(fā)展對數學(xué)發(fā)展的促進(jìn)作用。
三、教材分析:
本節內容主要學(xué)習對數的概念及其對數式與指數式的互化。它屬于函數領(lǐng)域的.知識。而對數的概念是對數函數部分教學(xué)中的核心概念之一,而函數的思想方法貫穿在高中數學(xué)教學(xué)的始終。通過(guò)對數的學(xué)習,可以解決數學(xué)中知道底數和冪值求指數的問(wèn)題,以及對數函數的相關(guān)問(wèn)題。
四、學(xué)情分析:
在ab=N(a>0,a≠1)中,知道底數和指數可以求冪值,那么知道底數和冪值如何求求指數,從學(xué)生認知的角度自然就產(chǎn)生了這樣的需要。因此,在前面學(xué)習指數的基礎上學(xué)習對數的概念是水到渠成的事。
五、教學(xué)目標:
(一)教學(xué)知識點(diǎn):
1.對數的概念。
2.對數式與指數式的互化。
(二)能力目標:
1.理解對數的概念。
2.能夠進(jìn)行對數式與指數式的互化。
(三)德育滲透目標:
1.認識事物之間的相互聯(lián)系與相互轉化,2.用聯(lián)系的觀(guān)點(diǎn)看問(wèn)題。
六、教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn)是對數定義,難點(diǎn)是對數概念的理解。
七、教學(xué)方法:
講練結合法八、教學(xué)流程:
問(wèn)題情景(復習引入)——實(shí)例分析、形成概念(導入新課)——深刻認識概念(對數式與指數式的互化)——變式分析、深化認識(對數的性質(zhì)、對數恒等式,介紹自然對數及常用對數)——練習小結、形成反思(例題,小結)
八、教學(xué)反思:
對本節內容在進(jìn)行教學(xué)設計之前,本人反復閱讀了課程標準和教材,教材內容的處理收到了一定的預期效果,尤其是練習的處理,充分發(fā)揮了學(xué)生的主體作用,也提高了學(xué)生主體的合作意識,達到了設計中所預想的目標。然而還有一些缺憾:對本節內容,難度不高,本人認為,教師的干預(講解)還是太多。在以后的教學(xué)中,對于一些較簡(jiǎn)單的內容,應放手讓學(xué)生多一些探究與合作。隨著(zhù)教育改革的深化,教學(xué)理念、教學(xué)模式、教學(xué)內容等教學(xué)因素,都在不斷更新,作為數學(xué)教師要更新教學(xué)觀(guān)念,從學(xué)生的全面發(fā)展來(lái)設計課堂教學(xué),關(guān)注學(xué)生個(gè)性和潛能的發(fā)展,使教學(xué)過(guò)程更加切合《課程標準》的要求。
對于本教學(xué)設計,時(shí)間倉促,不足之處在所難免,期待與各位同仁交流。
高中數學(xué)大單元教學(xué)設計4
【教學(xué)目的】
。1)使學(xué)生初步理解集合的概念,知道常用數集的概念及記法
。2)使學(xué)生初步了解“屬于”關(guān)系的意義
。3)使學(xué)生初步了解有限集、無(wú)限集、空集的意義
【重點(diǎn)難點(diǎn)】
教學(xué)重點(diǎn):集合的基本概念及表示方法
教學(xué)難點(diǎn):運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡(jiǎn)單的集合
授課類(lèi)型:新授課
課時(shí)安排:1課時(shí)
教具:多媒體、實(shí)物投影儀
【內容分析】
1、集合是中學(xué)數學(xué)的一個(gè)重要的基本概念在小學(xué)數學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應用集合的語(yǔ)言表述一些問(wèn)題例如,在代數中用到的有數集、解集等;在幾何中用到的有點(diǎn)集至于邏輯,可以說(shuō),從開(kāi)始學(xué)習數學(xué)就離不開(kāi)對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學(xué)習、工作中,也是認識問(wèn)題、研究問(wèn)題不可缺少的工具這些可以幫助學(xué)生認識學(xué)習本章的意義,也是本章學(xué)習的基礎
把集合的初步知識與簡(jiǎn)易邏輯知識安排在高中數學(xué)的最開(kāi)始,是因為在高中數學(xué)中,這些知識與其他內容有著(zhù)密切聯(lián)系,它們是學(xué)習、掌握和使用數學(xué)語(yǔ)言的基礎例如,下一章講函數的概念與性質(zhì),就離不開(kāi)集合與邏輯
本節首先從初中代數與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結合實(shí)例對集合的概念作了說(shuō)明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫(huà)圖表示集合的例子
這節課主要學(xué)習全章的引言和集合的基本概念學(xué)習引言是引發(fā)學(xué)生的學(xué)習興趣,使學(xué)生認識學(xué)習本章的意義本節課的教學(xué)重點(diǎn)是集合的基本概念
集合是集合論中的原始的、不定義的概念在開(kāi)始接觸集合的概念時(shí),主要還是通過(guò)實(shí)例,對概念有一個(gè)初步認識教科書(shū)給出的“一般地,某些指定的對象集在一起就成為一個(gè)集合,也簡(jiǎn)稱(chēng)集”這句話(huà),只是對集合概念的描述性說(shuō)明
【教學(xué)過(guò)程】
一、復習引入:
1、簡(jiǎn)介數集的發(fā)展,復習最大公約數和最小公倍數,質(zhì)數與和數;
2、教材中的章頭引言;
3、集合論的創(chuàng )始人——康托爾(德國數學(xué)家)(見(jiàn)附錄);
4、“物以類(lèi)聚”,“人以群分”;
5、教材中例子(P4)
二、講解新課:
閱讀教材第一部分,問(wèn)題如下:
。1)有那些概念?是如何定義的?
。2)有那些符號?是如何表示的?
。3)集合中元素的特性是什么?
。ㄒ唬┘系挠嘘P(guān)概念:
由一些數、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的。我們說(shuō),每一組對象的全體形成一個(gè)集合,或者說(shuō),某些指定的對象集在一起就成為一個(gè)集合,也簡(jiǎn)稱(chēng)集。集合中的每個(gè)對象叫做這個(gè)集合的元素。
定義:一般地,某些指定的對象集在一起就成為一個(gè)集合。
1、集合的概念
。1)集合:某些指定的對象集在一起就形成一個(gè)集合(簡(jiǎn)稱(chēng)集)
。2)元素:集合中每個(gè)對象叫做這個(gè)集合的元素
2、常用數集及記法
。1)非負整數集(自然數集):全體非負整數的集合記作N,(2)正整數集:非負整數集內排除0的集記作Nx或N+
。3)整數集:全體整數的'集合記作Z,(4)有理數集:全體有理數的集合記作Q,(5)實(shí)數集:全體實(shí)數的集合記作R
注:(1)自然數集與非負整數集是相同的,也就是說(shuō),自然數集包括數0
。2)非負整數集內排除0的集記作Nx或N+Q、Z、R等其它數集內排除0的集,也是這樣表示,例如,整數集內排除0的集,表示成Zx
3、元素對于集合的隸屬關(guān)系
。1)屬于:如果a是集合A的元素,就說(shuō)a屬于A(yíng),記作a∈A
。2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A(yíng),記作
4、集合中元素的特性
。1)確定性:按照明確的判斷標準給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可
。2)互異性:集合中的元素沒(méi)有重復
。3)無(wú)序性:集合中的元素沒(méi)有一定的順序(通常用正常的順序寫(xiě)出)
5、⑴集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫(xiě)的拉丁字母表示,如a、b、c、p、q……
、啤啊省钡拈_(kāi)口方向,不能把a∈A顛倒過(guò)來(lái)寫(xiě)
三、練習題:
1、教材P5練習1、2
2、下列各組對象能確定一個(gè)集合嗎?
。1)所有很大的實(shí)數(不確定)
。2)好心的人(不確定)
(3)1,2,2,3,4,5.(有重復)
3、設a,b是非零實(shí)數,那么可能取的值組成集合的元素是-2,0,2
4、由實(shí)數x,-x,|x|,所組成的集合,最多含(A)
(A)2個(gè)元素(B)3個(gè)元素(C)4個(gè)元素(D)5個(gè)元素
5、設集合G中的元素是所有形如a+b(a∈Z,b∈Z)的數,求證:
。1)當x∈N時(shí),x∈G;
。2)若x∈G,y∈G,則x+y∈G,而不一定屬于集合G
證明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,則x=x+0x=a+b∈G,即x∈G
證明(2):∵x∈G,y∈G,∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)
∴x+y=(a+b)+(c+d)=(a+c)+(b+d)
∵a∈Z,b∈Z,c∈Z,d∈Z
∴(a+c)∈Z,(b+d)∈Z
∴x+y=(a+c)+(b+d)∈G,又∵=且不一定都是整數,∴=不一定屬于集合G
【小結】
1、集合的有關(guān)概念:(集合、元素、屬于、不屬于)
2、集合元素的性質(zhì):確定性,互異性,無(wú)序性
3、常用數集的定義及記法
高中數學(xué)大單元教學(xué)設計5
一、教材
《直線(xiàn)與圓的位置關(guān)系》是高中人教版必修2第四章第二節的內容,直線(xiàn)和圓的位置關(guān)系是本章的重點(diǎn)內容之一。從知識體系上看,它既是點(diǎn)與圓的位置關(guān)系的延續與提高,又是學(xué)習切線(xiàn)的判定定理、圓與圓的位置關(guān)系的基礎。從數學(xué)思想方法層面上看它運用運動(dòng)變化的觀(guān)點(diǎn)揭示了知識的發(fā)生過(guò)程以及相關(guān)知識間的內在聯(lián)系,滲透了數形結合、分類(lèi)討論、類(lèi)比、化歸等數學(xué)思想方法,有助于提高學(xué)生的思維品質(zhì)。
二、學(xué)情
學(xué)生初中已經(jīng)接觸過(guò)直線(xiàn)與圓相交、相切、相離的定義和判定;且在上節的學(xué)習過(guò)程中掌握了點(diǎn)的坐標、直線(xiàn)的方程、圓的方程以及點(diǎn)到直線(xiàn)的距離公式;掌握利用方程組的方法來(lái)求直線(xiàn)的交點(diǎn);具有用坐標法研究點(diǎn)與圓的位置關(guān)系的基礎;具有一定的數形結合解題思想的基礎。
三、教學(xué)目標
(一)知識與技能目標
能夠準確用圖形表示出直線(xiàn)與圓的三種位置關(guān)系;可以利用聯(lián)立方程的方法和求點(diǎn)到直線(xiàn)的距離的方法簡(jiǎn)單判斷出直線(xiàn)與圓的關(guān)系。
(二)過(guò)程與方法目標
經(jīng)歷操作、觀(guān)察、探索、總結直線(xiàn)與圓的位置關(guān)系的判斷方法,從而鍛煉觀(guān)察、比較、概括的邏輯思維能力。
(三)情感態(tài)度價(jià)值觀(guān)目標
激發(fā)求知欲和學(xué)習興趣,鍛煉積極探索、發(fā)現新知識、總結規律的能力,解題時(shí)養成歸納總結的良好習慣。
四、教學(xué)重難點(diǎn)
(一)重點(diǎn)
用解析法研究直線(xiàn)與圓的位置關(guān)系。
(二)難點(diǎn)
體會(huì )用解析法解決問(wèn)題的數學(xué)思想。
五、教學(xué)方法
根據本節課教材內容的特點(diǎn),為了更直觀(guān)、形象地突出重點(diǎn),突破難點(diǎn),借助信息技術(shù)工具,以幾何畫(huà)板為平臺,通過(guò)圖形的.動(dòng)態(tài)演示,變抽象為直觀(guān),為學(xué)生的數學(xué)探究與數學(xué)思維提供支持.在教學(xué)中采用小組合作學(xué)習的方式,這樣可以為不同認知基礎的學(xué)生提供學(xué)習機會(huì ),同時(shí)有利于發(fā)揮各層次學(xué)生的作用,教師始終堅持啟發(fā)式教學(xué)原則,設計一系列問(wèn)題串,以引導學(xué)生的數學(xué)思維活動(dòng)。
六、教學(xué)過(guò)程
(一)導入新課
教師借助多媒體創(chuàng )設泰坦尼克號的情景,并從中抽象出數學(xué)模型:已知冰山的分布是一個(gè)半徑為r的圓形區域,圓心位于輪船正西的1處,問(wèn),輪船如何航行能夠避免撞到冰山呢?如何行駛便又會(huì )撞到冰山呢?
教師引導學(xué)生回顧初中已經(jīng)學(xué)習的直線(xiàn)與圓的位置關(guān)系,將所想到的航行路線(xiàn)轉化成數學(xué)簡(jiǎn)圖,即相交、相切、相離。
設計意圖:在已有的知識基礎上,提出新的問(wèn)題,有利于保持學(xué)生知識結構的連續性,同時(shí)開(kāi)闊視野,激發(fā)學(xué)生的學(xué)習興趣。
(二)新課教學(xué)——探究新知
教師提問(wèn)如何判斷直線(xiàn)與圓的位置關(guān)系,學(xué)生先獨立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學(xué)所想到的思路。在整個(gè)交流討論中,教師既要有對正確認識的贊賞,又要有對錯誤見(jiàn)解的分析及對該學(xué)生的鼓勵。
判斷方法:
(1)定義法:看直線(xiàn)與圓公共點(diǎn)個(gè)數
即研究方程組解的個(gè)數,具體做法是聯(lián)立兩個(gè)方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關(guān)系。
(2)比較法:圓心到直線(xiàn)的距離d與圓的半徑r做比較
(三)合作探究——深化新知
教師進(jìn)一步拋出疑問(wèn),對比兩種方法,由學(xué)生觀(guān)察實(shí)踐發(fā)現,兩種方法本質(zhì)相同,但比較法只適合于直線(xiàn)與圓,而定義法適用范圍更廣。教師展示較為基礎的題目,學(xué)生解答,總結思路。
已知直線(xiàn)3x+4y-5=0與圓x2+y2=1,判斷它們的位置關(guān)系?
讓學(xué)生自主探索,討論交流,并闡述自己的解題思路。
當已知了直線(xiàn)與圓的方程之后,圓心坐標和半徑r易得到,問(wèn)題的關(guān)鍵是如何得到圓心到直線(xiàn)的距離d,他的本質(zhì)是點(diǎn)到直線(xiàn)的距離,便可以直接利用點(diǎn)到直線(xiàn)的距離公式求d。類(lèi)比前面所學(xué)利用直線(xiàn)方程求兩直線(xiàn)交點(diǎn)的方法,聯(lián)立直線(xiàn)與圓的方程,組成方程組,通過(guò)方程組解得個(gè)數確定直線(xiàn)與圓的交點(diǎn)個(gè)數,進(jìn)一步確定他們的位置關(guān)系。最后明確解題步驟。
(四)歸納總結——鞏固新知
為了將結論由特殊推廣到一般引導學(xué)生思考:
可由方程組的解的不同情況來(lái)判斷:
當方程組有兩組實(shí)數解時(shí),直線(xiàn)1與圓C相交;當方程組有一組實(shí)數解時(shí),直線(xiàn)1與圓C相切;當方程組沒(méi)有實(shí)數解時(shí),直線(xiàn)1與圓C相離。
活動(dòng):我將抽取兩位同學(xué)在黑板上扮演,并在巡視過(guò)程中對部分學(xué)生加以指導。最后對黑板上的兩名學(xué)生的解題過(guò)程加以分析完善。通過(guò)對基礎題的練習,鞏固兩種判斷直線(xiàn)與圓的位置關(guān)系判斷方法,并使每一個(gè)學(xué)生獲得后續學(xué)習的信心。
(五)小結作業(yè)
在小結環(huán)節,我會(huì )以口頭提問(wèn)的方式:
(1)這節課學(xué)習的主要內容是什么?
(2)在數學(xué)問(wèn)題的解決過(guò)程中運用了哪些數學(xué)思想?
設計意圖:?jiǎn)l(fā)式的課堂小結方式能讓學(xué)生主動(dòng)回顧本節課所學(xué)的知識點(diǎn)。也促使學(xué)生對知識網(wǎng)絡(luò )進(jìn)行主動(dòng)建構。
作業(yè):在學(xué)生回顧本堂學(xué)習內容明確兩種解題思路后,教師讓學(xué)生對比兩種解法,那種更簡(jiǎn)捷,明確本節課主要用比較d與r的關(guān)系來(lái)解決這類(lèi)問(wèn)題,對用方程組解的個(gè)數的判斷方法,要求學(xué)生課外做進(jìn)一步的探究,下一節課匯報。
高中數學(xué)大單元教學(xué)設計6
一、單元教學(xué)內容
。ǎ保┧惴ǖ幕靖拍
。ǎ玻┧惴ǖ幕窘Y構:順序、條件、循環(huán)結構
。ǎ常┧惴ǖ幕菊Z(yǔ)句:輸入、輸出、賦值、條件、循環(huán)語(yǔ)句
二、單元教學(xué)內容分析
算法是數學(xué)及其應用的重要組成部分,是計算科學(xué)的重要基礎。隨著(zhù)現代信息技術(shù)飛速發(fā)展,算法在科學(xué)技術(shù)、社會(huì )發(fā)展中發(fā)揮著(zhù)越來(lái)越大的作用,并日益融入社會(huì )生活的許多方面,算法思想已經(jīng)成為現代人應具備的一種數學(xué)素養。需要特別指出的是,中國古代數學(xué)中蘊涵了豐富的算法思想。在本模塊中,學(xué)生將在中學(xué)教育階段初步感受算法思想的基礎上,結合對具體數學(xué)實(shí)例的分析,體驗程序框圖在解決問(wèn)題中的'作用;通過(guò)模仿、操作、探索,學(xué)習設計程序框圖表達解決問(wèn)題的過(guò)程;體會(huì )算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達的能力,提高邏輯思維能力
三、單元教學(xué)課時(shí)安排:
。、算法的基本概念3課時(shí)
。、程序框圖與算法的基本結構5課時(shí)
。、算法的基本語(yǔ)句2課時(shí)
四、單元教學(xué)目標分析
。、通過(guò)對解決具體問(wèn)題過(guò)程與步驟的分析體會(huì )算法的思想,了解算法的含義
。、通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設計程序框圖表達解決問(wèn)題的過(guò)程。在具體問(wèn)題的解決過(guò)程中理解程序框圖的三種基本邏輯結構:順序、條件、循環(huán)結構。
。、經(jīng)歷將具體問(wèn)題的程序框圖轉化為程序語(yǔ)句的過(guò)程,理解幾種基本算法語(yǔ)句:輸入、輸出、斌值、條件、循環(huán)語(yǔ)句,進(jìn)一步體會(huì )算法的基本思想。
。、通過(guò)閱讀中國古代數學(xué)中的算法案例,體會(huì )中國古代數學(xué)對世界數學(xué)發(fā)展的貢獻。
五、單元教學(xué)重點(diǎn)與難點(diǎn)分析
。、重點(diǎn)
。ǎ保├斫馑惴ǖ暮x
。ǎ玻┱莆账惴ǖ幕窘Y構
。ǎ常⿻(huì )用算法語(yǔ)句解決簡(jiǎn)單的實(shí)際問(wèn)題
。、難點(diǎn)
。ǎ保┏绦蚩驁D
。ǎ玻┳兞颗c賦值
。ǎ常┭h(huán)結構
。ǎ矗┧惴ㄔO計
六、單元總體教學(xué)方法
本章教學(xué)采用啟發(fā)式教學(xué),輔以觀(guān)察法、發(fā)現法、練習法、講解法。采用這些方法的原因是學(xué)生的邏輯能力不是很強,只能通過(guò)對實(shí)例的認真領(lǐng)會(huì )及一定的練習才能掌握本節知識。
七、單元展開(kāi)方式與特點(diǎn)
。、展開(kāi)方式
自然語(yǔ)言→程序框圖→算法語(yǔ)句
。、特點(diǎn)
。ǎ保┞菪仙謱舆f進(jìn)
。ǎ玻┱蠞B透前呼后應
。ǎ常┤(xiàn)合一橫向貫通
。ǎ矗⿵椥蕴幚矶鄻舆x擇
八、單元教學(xué)過(guò)程分析
1.算法基本概念教學(xué)過(guò)程分析
對生活中的實(shí)際問(wèn)題通過(guò)對解決具體問(wèn)題過(guò)程與步驟的分析(喝茶,如二元一次方程組求解問(wèn)題),體會(huì )算法的思想,了解算法的含義,能用自然語(yǔ)言描述算法。
2.算法的流程圖教學(xué)過(guò)程分析
對生活中的實(shí)際問(wèn)題通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設計流程圖表達解決問(wèn)題的過(guò)程,了解算法和程序語(yǔ)言的區別;在具體問(wèn)題的解決過(guò)程中,理解流程圖的三種基本邏輯結構:順序、條件分支、循環(huán),會(huì )用流程圖表示算法。
3.基本算法語(yǔ)句教學(xué)過(guò)程分析
經(jīng)歷將具體生活中問(wèn)題的流程圖轉化為程序語(yǔ)言的過(guò)程,理解表示的幾種基本算法語(yǔ)句:賦值語(yǔ)句、輸入語(yǔ)句、輸出語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句,進(jìn)一步體會(huì )算法的基本思想。能用自然語(yǔ)言、流程圖和基本算法語(yǔ)句表達算法,4.通過(guò)閱讀中國古代數學(xué)中的算法案例,體會(huì )中國古代數學(xué)對世界數學(xué)發(fā)展的貢獻。
九、單元評價(jià)設想
1、重視對學(xué)生數學(xué)學(xué)習過(guò)程的評價(jià)
關(guān)注學(xué)生在數學(xué)語(yǔ)言的學(xué)習過(guò)程中,是否對用集合語(yǔ)言描述數學(xué)和現實(shí)生活中的問(wèn)題充滿(mǎn)興趣;在學(xué)習過(guò)程中,能否體會(huì )集合語(yǔ)言準確、簡(jiǎn)潔的特征;是否能積極、主動(dòng)地發(fā)展自己運用數學(xué)語(yǔ)言進(jìn)行交流的能力。
2、正確評價(jià)學(xué)生的數學(xué)基礎知識和基本技能
關(guān)注學(xué)生在本章(節)及今后學(xué)習中,讓學(xué)生集中學(xué)習算法的初步知識,主要包括算法的基本結構、基本語(yǔ)句、基本思想等。算法思想將貫穿高中數學(xué)課程的相關(guān)部分,在其他相關(guān)部分還將進(jìn)一步學(xué)習算法
高中數學(xué)大單元教學(xué)設計7
一、教學(xué)內容分析
圓錐曲線(xiàn)的定義反映了圓錐曲線(xiàn)的本質(zhì)屬性,它是無(wú)數次實(shí)踐后的高度抽象,恰當地利用定義解題,許多時(shí)候能以簡(jiǎn)馭繁。因此,在學(xué)習了橢圓、雙曲線(xiàn)、拋物線(xiàn)的定義及標準方程、幾何性質(zhì)后,再一次強調定義,學(xué)會(huì )利用圓錐曲線(xiàn)定義來(lái)熟練的解題”。
二、學(xué)生學(xué)習情況分析
我所任教班級的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學(xué)語(yǔ)言的表達能力也略顯不足。
三、設計思想
由于這部分知識較為抽象,如果離開(kāi)感性認識,容易使學(xué)生陷入困境,降低學(xué)習熱情。在教學(xué)時(shí),借助多媒體動(dòng)畫(huà),引導學(xué)生主動(dòng)發(fā)現問(wèn)題、解決問(wèn)題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現、獲取新知,提高教學(xué)效率。
四、教學(xué)目標
1、深刻理解并熟練掌握圓錐曲線(xiàn)的定義,能靈活應用定義解決問(wèn)題;熟練掌握焦點(diǎn)坐標、頂點(diǎn)坐標、焦距、離心率、準線(xiàn)方程、漸近線(xiàn)、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線(xiàn)的方程。
2、通過(guò)對練習,強化對圓錐曲線(xiàn)定義的理解,提高分析、解決問(wèn)題的能力;通過(guò)對問(wèn)題的不斷引申,精心設問(wèn),引導學(xué)生學(xué)習解題的一般方法。
3、借助多媒體輔助教學(xué),激發(fā)學(xué)習數學(xué)的興趣。
五、教學(xué)重點(diǎn)與難點(diǎn):
教學(xué)重點(diǎn)
1、對圓錐曲線(xiàn)定義的理解
2、利用圓錐曲線(xiàn)的定義求“最值”
3、“定義法”求軌跡方程
教學(xué)難點(diǎn):
巧用圓錐曲線(xiàn)定義解題
六、教學(xué)過(guò)程設計
【設計思路】
(一)開(kāi)門(mén)見(jiàn)山,提出問(wèn)題
一上課,我就直截了當地給出例題1:
(1)已知A(-2,0),B(2,0)動(dòng)點(diǎn)M滿(mǎn)足|MA|+|MB|=2,則點(diǎn)M的軌跡是()。
(A)橢圓(B)雙曲線(xiàn)(C)線(xiàn)段(D)不存在
(2)已知動(dòng)點(diǎn)M(x,y)滿(mǎn)足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是()。
(A)橢圓(B)雙曲線(xiàn)(C)拋物線(xiàn)(D)兩條相交直線(xiàn)
【設計意圖】
定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習和研究數學(xué)的一個(gè)必備條件,而通過(guò)一個(gè)階段的學(xué)習之后,學(xué)生們對圓錐曲線(xiàn)的定義已有了一定的認識,他們是否能真正掌握它們的本質(zhì),是我本節課首先要弄清楚的問(wèn)題。
為了加深學(xué)生對圓錐曲線(xiàn)定義理解,我以圓錐曲線(xiàn)的定義的運用為主線(xiàn),精心準備了兩道練習題。
【學(xué)情預設】
估計多數學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對于圓錐曲線(xiàn)的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著(zhù)說(shuō)出:若想答案是其他選項的話(huà),條件要怎么改?這對于已學(xué)完圓錐曲線(xiàn)這部分知識的學(xué)生來(lái)說(shuō),并不是什么難事。但問(wèn)題(2)就可能讓學(xué)生們費一番周折——如果有學(xué)生提出:可以利用變形來(lái)解決問(wèn)題,那么我就可以循著(zhù)他的思路,先對原等式做變形:(x1)2(y2)25
這樣,很快就能得出正確結果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5入手,考慮通過(guò)適當的變形,轉化為學(xué)生們熟知的`兩個(gè)距離公式。
在對學(xué)生們的解答做出判斷后,我將把問(wèn)題引申為:該雙曲線(xiàn)的中心坐標是,實(shí)軸長(cháng)為,焦距為。以深化對概念的理解。
(二)理解定義、解決問(wèn)題
例2:
(1)已知動(dòng)圓A過(guò)定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內切,求△ABC面積的最大值。
(2)在(1)的條件下,給定點(diǎn)P(-2,2),求|PA|
【設計意圖】
運用圓錐曲線(xiàn)定義中的數量關(guān)系進(jìn)行轉化,使問(wèn)題化歸為幾何中求最大(小)值的模式,是解析幾何問(wèn)題中的一種常見(jiàn)題型,也是學(xué)生們比較容易混淆的一類(lèi)問(wèn)題。例2的設置就是為了方便學(xué)生的辨析。
【學(xué)情預設】
根據以往的經(jīng)驗,多數學(xué)生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實(shí)上,解決本題的關(guān)鍵在于能準確寫(xiě)出點(diǎn)A的軌跡,有了練習題1的鋪墊,這個(gè)問(wèn)題對學(xué)生們來(lái)講就顯得頗為簡(jiǎn)單,因此面對例2(1),多數學(xué)生應該能準確給出解答,但是對于例2(2)這樣相對比較陌生的問(wèn)題,學(xué)生就無(wú)從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來(lái),這樣就容易和第二定義聯(lián)系起來(lái),從而找到解決本題的突破口。
(三)自主探究、深化認識
如果時(shí)間允許,練習題將為學(xué)生們提供一次數學(xué)猜想、試驗的機會(huì )。
練習:
設點(diǎn)Q是圓C:(x1)2225|AB|的最小值。3y225上動(dòng)點(diǎn),點(diǎn)A(1,0)是圓內一點(diǎn),AQ的垂直平分線(xiàn)與CQ交于點(diǎn)M,求點(diǎn)M的軌跡方程。
引申:若將點(diǎn)A移到圓C外,點(diǎn)M的軌跡會(huì )是什么?
【設計意圖】練習題設置的目的是為學(xué)生課外自主探究學(xué)習提供平臺,當然,如果課堂上時(shí)間允許的話(huà),可借助“多媒體課件”,引導學(xué)生對自己的結論進(jìn)行驗證。
【知識鏈接】
(一)圓錐曲線(xiàn)的定義
1、圓錐曲線(xiàn)的第一定義
2、圓錐曲線(xiàn)的統一定義
(二)圓錐曲線(xiàn)定義的應用舉例
1、雙曲線(xiàn)1的兩焦點(diǎn)為F1、F2,P為曲線(xiàn)上一點(diǎn),若P到左焦點(diǎn)F1的距離為12,求P到右準線(xiàn)的距離。
2、|PF1||PF2|2P為等軸雙曲線(xiàn)x2y2a2上一點(diǎn),F1、F2為兩焦點(diǎn),O為雙曲線(xiàn)的中心,求的|PO|取值范圍。
3、在拋物線(xiàn)y22px上有一點(diǎn)A(4,m),A點(diǎn)到拋物線(xiàn)的焦點(diǎn)F的距離為5,求拋物線(xiàn)的方程和點(diǎn)A的坐標。
4、例題:
(1)已知點(diǎn)F是橢圓1的右焦點(diǎn),M是這橢圓上的動(dòng)點(diǎn),A(2,2)是一個(gè)定點(diǎn),求|MA|+|MF|的最小值。
(2)已知A(,3)為一定點(diǎn),F為雙曲線(xiàn)1的右焦點(diǎn),M在雙曲線(xiàn)右支上移動(dòng),當|AM||MF|最小時(shí),求M點(diǎn)的坐標。
(3)已知點(diǎn)P(-2,3)及焦點(diǎn)為F的拋物線(xiàn)y,在拋物線(xiàn)上求一點(diǎn)M,使|PM|+|FM|最小。
5、已知A(4,0),B(2,2)是橢圓1內的點(diǎn),M是橢圓上的動(dòng)點(diǎn),求|MA|+|MB|的最小值與最大值。
七、教學(xué)反思
1、本課將借助于,將使全體學(xué)生參與活動(dòng)成為可能,使原來(lái)令人難以理解的抽象的數學(xué)理論變得形象,生動(dòng)且通俗易懂,同時(shí),運用“多媒體課件”輔助教學(xué),節省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機結合的教學(xué)優(yōu)勢。
2、利用兩個(gè)例題及其引申,通過(guò)一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養學(xué)生思維能力,使學(xué)生從學(xué)會(huì )一個(gè)問(wèn)題的求解到掌握一類(lèi)問(wèn)題的解決方法,循序漸進(jìn)的讓學(xué)生把握這類(lèi)問(wèn)題的解法;將學(xué)生容易混淆的兩類(lèi)求“最值問(wèn)題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運動(dòng)量并不會(huì )小。
總之,如何更好地選擇符合學(xué)生具體情況,滿(mǎn)足教學(xué)目標的例題與練習、靈活把握課堂教學(xué)節奏仍是我今后工作中的一個(gè)重要研究課題,而要能真正進(jìn)行素質(zhì)教育,培養學(xué)生的創(chuàng )新意識,自己首先必須更新觀(guān)念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機會(huì ),能夠使學(xué)生在學(xué)習新知識的同時(shí),激發(fā)起求知的欲望,在尋求解決問(wèn)題的辦法的過(guò)程中獲得自信和成功的體驗,于不知不覺(jué)中改善了他們的思維品質(zhì),提高了數學(xué)思維能力。
【高中數學(xué)大單元教學(xué)設計】相關(guān)文章:
高中數學(xué)單元教學(xué)設計06-19
音樂(lè )單元教學(xué)設計11-02
高中數學(xué)教學(xué)設計07-02
小學(xué)數學(xué)單元教學(xué)設計05-29
《單元練習1》教學(xué)設計04-03
《單元練習3》教學(xué)設計04-06
高中數學(xué)教學(xué)設計范文05-08