高中數學(xué)教學(xué)設計范文
作為一名教師,通常需要用到教學(xué)設計來(lái)輔助教學(xué),借助教學(xué)設計可以更大幅度地提高學(xué)生各方面的能力,從而使學(xué)生獲得良好的發(fā)展。如何把教學(xué)設計做到重點(diǎn)突出呢?下面是小編為大家收集的高中數學(xué)教學(xué)設計范文,歡迎大家分享。
高中數學(xué)教學(xué)設計范文1
一、教學(xué)內容分析
圓錐曲線(xiàn)的定義反映了圓錐曲線(xiàn)的本質(zhì)屬性,它是無(wú)數次實(shí)踐后的高度抽象.恰當地利用定義解題,許多時(shí)候能以簡(jiǎn)馭繁.因此,在學(xué)習了橢圓、雙曲線(xiàn)、拋物線(xiàn)的定義及標準方程、幾何性質(zhì)后,再一次強調定義,學(xué)會(huì )利用圓錐曲線(xiàn)定義來(lái)熟練的解題”。
二、學(xué)生學(xué)習情況分析
我所任教班級的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學(xué)語(yǔ)言的表達能力也略顯不足。
三、設計思想
由于這部分知識較為抽象,如果離開(kāi)感性認識,容易使學(xué)生陷入困境,降低學(xué)習熱情.在教學(xué)時(shí),借助多媒體動(dòng)畫(huà),引導學(xué)生主動(dòng)發(fā)現問(wèn)題、解決問(wèn)題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現、獲取新知,提高教學(xué)效率.
四、教學(xué)目標
1.深刻理解并熟練掌握圓錐曲線(xiàn)的定義,能靈活應用定義解決問(wèn)題;熟練掌握焦點(diǎn)坐標、頂點(diǎn)坐標、焦距、離心率、準線(xiàn)方程、漸近線(xiàn)、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線(xiàn)的方程。
2.通過(guò)對練習,強化對圓錐曲線(xiàn)定義的理解,提高分析、解決問(wèn)題的能力;通過(guò)對問(wèn)題的不斷引申,精心設問(wèn),引導學(xué)生學(xué)習解題的一般方法。
3.借助多媒體輔助教學(xué),激發(fā)學(xué)習數學(xué)的興趣.
五、教學(xué)重點(diǎn)與難點(diǎn):
教學(xué)重點(diǎn)
1.對圓錐曲線(xiàn)定義的理解
2.利用圓錐曲線(xiàn)的定義求“最值”
3.“定義法”求軌跡方程
教學(xué)難點(diǎn):
巧用圓錐曲線(xiàn)定義解題
六、教學(xué)過(guò)程設計
【設計思路】
(一)開(kāi)門(mén)見(jiàn)山,提出問(wèn)題
一上課,我就直截了當地給出——
例題1:(1) 已知A(-2,0), B(2,0)動(dòng)點(diǎn)M滿(mǎn)足|MA|+|MB|=2,則點(diǎn)M的軌跡是( )。
(A)橢圓 (B)雙曲線(xiàn) (C)線(xiàn)段 (D)不存在
(2)已知動(dòng)點(diǎn) M(x,y)滿(mǎn)足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是( )。
(A)橢圓 (B)雙曲線(xiàn) (C)拋物線(xiàn) (D)兩條相交直線(xiàn)
【設計意圖】
定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習和研究數學(xué)的一個(gè)必備條件,而通過(guò)一個(gè)階段的學(xué)習之后,學(xué)生們對圓錐曲線(xiàn)的定義已有了一定的認識,他們是否能真正掌握它們的本質(zhì),是我本節課首先要弄清楚的問(wèn)題。
為了加深學(xué)生對圓錐曲線(xiàn)定義理解,我以圓錐曲線(xiàn)的定義的運用為主線(xiàn),精心準備了兩道練習題。
【學(xué)情預設】
估計多數學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對于圓錐曲線(xiàn)的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著(zhù)說(shuō)出:若想答案是其他選項的話(huà),條件要怎么改?這對于已學(xué)完圓錐曲線(xiàn)這部分知識的.學(xué)生來(lái)說(shuō),并不是什么難事。但問(wèn)題(2)就可能讓學(xué)生們費一番周折—— 如果有學(xué)生提出:可以利用變形來(lái)解決問(wèn)題,那么我就可以循著(zhù)他的思路,先對原等式做變形:(x1)2(y2)2
5這樣,很快就能得出正確結果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5
入手,考慮通過(guò)適當的變形,轉化為學(xué)生們熟知的兩個(gè)距離公式。
在對學(xué)生們的解答做出判斷后,我將把問(wèn)題引申為:該雙曲線(xiàn)的中心坐標是 ,實(shí)軸長(cháng)為 ,焦距為 。以深化對概念的理解。
(二)理解定義、解決問(wèn)題
例2 (1)已知動(dòng)圓A過(guò)定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內切,求△ABC面積的最大值。
(2)在(1)的條件下,給定點(diǎn)P(-2,2), 求|PA|
【設計意圖】
運用圓錐曲線(xiàn)定義中的數量關(guān)系進(jìn)行轉化,使問(wèn)題化歸為幾何中求最大(小)值的模式,是解析幾何問(wèn)題中的一種常見(jiàn)題型,也是學(xué)生們比較容易混淆的一類(lèi)問(wèn)題。例2的設置就是為了方便學(xué)生的辨析。
【學(xué)情預設】
根據以往的經(jīng)驗,多數學(xué)生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實(shí)上,解決本題的關(guān)鍵在于能準確寫(xiě)出點(diǎn)A的軌跡,有了練習題1的鋪墊,這個(gè)問(wèn)題對學(xué)生們來(lái)講就顯得頗為簡(jiǎn)單,因此面對例2(1),多數學(xué)生應該能準確給出解答,但是對于例2(2)這樣相對比較陌生的問(wèn)題,學(xué)生就無(wú)從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來(lái),這樣就容易和第二定義聯(lián)系起來(lái),從而找到解決本題的突破口。
(三)自主探究、深化認識
如果時(shí)間允許,練習題將為學(xué)生們提供一次數學(xué)猜想、試驗的機會(huì )——
練習:設點(diǎn)Q是圓C:(x1)2225|AB|的最小值。 3y225上動(dòng)點(diǎn),點(diǎn)A(1,0)是圓內一點(diǎn),AQ的垂直平分線(xiàn)與CQ交于點(diǎn)M,求點(diǎn)M的軌跡方程。
引申:若將點(diǎn)A移到圓C外,點(diǎn)M的軌跡會(huì )是什么?
【設計意圖】 練習題設置的目的是為學(xué)生課外自主探究學(xué)習提供平臺,當然,如果課堂上時(shí)間允許的話(huà),
可借助“多媒體課件”,引導學(xué)生對自己的結論進(jìn)行驗證。
【知識鏈接】
(一)圓錐曲線(xiàn)的定義
1. 圓錐曲線(xiàn)的第一定義
2. 圓錐曲線(xiàn)的統一定義
(二)圓錐曲線(xiàn)定義的應用舉例
1.雙曲線(xiàn)1的兩焦點(diǎn)為F1、F2,P為曲線(xiàn)上一點(diǎn),若P到左焦點(diǎn)F1的距離為12,求P到右準線(xiàn)的距離。
2.|PF1||PF2|2.P為等軸雙曲線(xiàn)x2y2a2上一點(diǎn), F1、F2為兩焦點(diǎn),O為雙曲線(xiàn)的中心,求的|PO|取值范圍。
3.在拋物線(xiàn)y22px上有一點(diǎn)A(4,m),A點(diǎn)到拋物線(xiàn)的焦點(diǎn)F的距離為5,求拋物線(xiàn)的方程和點(diǎn)A的坐標。
4.(1)已知點(diǎn)F是橢圓1的右焦點(diǎn),M是這橢圓上的動(dòng)點(diǎn),A(2,2)是一個(gè)定點(diǎn),求|MA|+|MF|的最小值。
x2y211(2)已知A(,3)為一定點(diǎn),F為雙曲線(xiàn)1的右焦點(diǎn),M在雙曲線(xiàn)右支上移動(dòng),當|AM||MF|最小時(shí),求M點(diǎn)的坐標。
(3)已知點(diǎn)P(-2,3)及焦點(diǎn)為F的拋物線(xiàn)y,在拋物線(xiàn)上求一點(diǎn)M,使|PM|+|FM|最小。
5.已知A(4,0),B(2,2)是橢圓1內的點(diǎn),M是橢圓上的動(dòng)點(diǎn),求|MA|+|MB|的最小值與最大值。
七、教學(xué)反思
1.本課將借助于,將使全體學(xué)生參與活動(dòng)成為可能,使原來(lái)令人難以理解的抽象的數學(xué)理論變得形象,生動(dòng)且通俗易懂,同時(shí),運用“多媒體課件”輔助教學(xué),節省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機結合的教學(xué)優(yōu)勢。
2.利用兩個(gè)例題及其引申,通過(guò)一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養學(xué)生思維能力,使學(xué)生從學(xué)會(huì )一個(gè)問(wèn)題的求解到掌握一類(lèi)問(wèn)題的解決方法. 循序漸進(jìn)的讓學(xué)生把握這類(lèi)問(wèn)題的解法;將學(xué)生容易混淆的兩類(lèi)求“最值問(wèn)題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運動(dòng)量并不會(huì )小。
總之,如何更好地選擇符合學(xué)生具體情況,滿(mǎn)足教學(xué)目標的例題與練習、靈活把握課堂教學(xué)節奏仍是我今后工作中的一個(gè)重要研究課題.而要能真正進(jìn)行素質(zhì)教育,培養學(xué)生的創(chuàng )新意識,自己首先必須更新觀(guān)念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機會(huì ),能夠使學(xué)生在學(xué)習新知識的同時(shí),激發(fā)起求知的欲望,在尋求解決問(wèn)題的辦法的過(guò)程中獲得自信和成功的體驗,于不知不覺(jué)中改善了他們的思維品質(zhì),提高了數學(xué)思維能力。
高中數學(xué)教學(xué)設計范文2
一、指導思想與理論依據
數學(xué)是一門(mén)培養人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過(guò)程。因此本節課我以建構主義的“創(chuàng )設問(wèn)題情境——提出數學(xué)問(wèn)題——嘗試解決問(wèn)題——驗證解決方法”為主,主要采用觀(guān)察、啟發(fā)、類(lèi)比、引導、探索相結合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問(wèn)題形象化,使教學(xué)目標體現的更加完美。
二、教材分析
三角函數的誘導公式是普通高中課程標準實(shí)驗教科書(shū)(人教A版)數學(xué)必修四,第一章第三節的內容,其主要內容是三角函數誘導公式中的公式(二)至公式(六).本節是第一課時(shí),教學(xué)內容為公式(二)、(三)、(四).教材要求通過(guò)學(xué)生在已經(jīng)掌握的任意角的三角函數的定義和誘導公式(一)的基礎上,利用對稱(chēng)思想發(fā)現任意角 與 、 、 終邊的對稱(chēng)關(guān)系,發(fā)現他們與單位圓的交點(diǎn)坐標之間關(guān)系,進(jìn)而發(fā)現他們的三角函數值的關(guān)系,即發(fā)現、掌握、應用三角函數的誘導公式公式(二)、(三)、(四).同時(shí)教材滲透了轉化與化歸等數學(xué)思想方法,為培養學(xué)生養成良好的學(xué)習習慣提出了要求.為此本節內容在三角函數中占有非常重要的地位.
三、學(xué)情分析
本節課的授課對象是本校高一(1)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動(dòng)手的良好學(xué)習習慣,所以采用發(fā)現的教學(xué)方法應該能輕松的完成本節課的教學(xué)內容.
四、教學(xué)目標
(1).基礎知識目標:理解誘導公式的發(fā)現過(guò)程,掌握正弦、余弦、正切的誘導公式;
(2).能力訓練目標:能正確運用誘導公式求任意角的正弦、余弦、正切值,以及進(jìn)行簡(jiǎn)單的三角函數求值與化簡(jiǎn);
(3).創(chuàng )新素質(zhì)目標:通過(guò)對公式的推導和運用,提高三角恒等變形的能力和滲透化歸、數形結合的數學(xué)思想,提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力;
(4).個(gè)性品質(zhì)目標:通過(guò)誘導公式的學(xué)習和應用,感受事物之間的普通聯(lián)系規律,運用化歸等數學(xué)思想方法,揭示事物的本質(zhì)屬性,培養學(xué)生的唯物史觀(guān).
五、教學(xué)重點(diǎn)和難點(diǎn)
1.教學(xué)重點(diǎn)
理解并掌握誘導公式.
2.教學(xué)難點(diǎn)
正確運用誘導公式,求三角函數值,化簡(jiǎn)三角函數式.
六、教法學(xué)法以及預期效果分析
高中數學(xué)優(yōu)秀教案高中數學(xué)教學(xué)設計與教學(xué)反思
“授人以魚(yú)不如授之以魚(yú)”, 作為一名老師,我們不僅要傳授給學(xué)生數學(xué)知識,更重要的是傳授給學(xué)生數學(xué)思想方法, 如何實(shí)現這一目的',要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學(xué)法、預期效果等三個(gè)方面做如下分析.
1.教法
數學(xué)教學(xué)是數學(xué)思維活動(dòng)的教學(xué),而不僅僅是數學(xué)活動(dòng)的結果,數學(xué)學(xué)習的目的不僅僅是為了獲得數學(xué)知識,更主要作用是為了訓練人的思維技能,提高人的思維品質(zhì).
在本節課的教學(xué)過(guò)程中,本人以學(xué)生為主題,以發(fā)現為主線(xiàn),盡力滲透類(lèi)比、化歸、數形結合等數學(xué)思想方法,采用提出問(wèn)題、啟發(fā)引導、共同探究、綜合應用等教學(xué)模式,還給學(xué)生“時(shí)間”、“空間”, 由易到難,由特殊到一般,盡力營(yíng)造輕松的學(xué)習環(huán)境,讓學(xué)生體味學(xué)習的快樂(lè )和成功的喜悅.
2.學(xué)法
“現代的文盲不是不識字的人,而是沒(méi)有掌握學(xué)習方法的人”,很多課堂教學(xué)常常以高起點(diǎn)、大容量、快推進(jìn)的做法,以便教給學(xué)生更多的知識點(diǎn),卻忽略了學(xué)生接受知識需要時(shí)間消化,進(jìn)而泯滅了學(xué)生學(xué)習的興趣與熱情.如何能讓學(xué)生最大程度的消化知識,提高學(xué)習熱情是教者必須思考的問(wèn)題.
在本節課的教學(xué)過(guò)程中,本人引導學(xué)生的學(xué)法為思考問(wèn)題、共同探討、解決問(wèn)題 簡(jiǎn)單應用、重現探索過(guò)程、練習鞏固。讓學(xué)生參與探索的全部過(guò)程,讓學(xué)生在獲取新知識及解決問(wèn)題的方法后,合作交流、共同探索,使之由被動(dòng)學(xué)習轉化為主動(dòng)的自主學(xué)習.
3.預期效果
本節課預期讓學(xué)生能正確理解誘導公式的發(fā)現、證明過(guò)程,掌握誘導公式,并能熟練應用誘導公式了解一些簡(jiǎn)單的化簡(jiǎn)問(wèn)題.
七、教學(xué)流程設計
(一)創(chuàng )設情景
1.復習銳角300,450,600的三角函數值;
2.復習任意角的三角函數定義;
3.問(wèn)題:由 ,你能否知道sin2100的值嗎?引如新課.
設計意圖
高中數學(xué)優(yōu)秀教案 高中數學(xué)教學(xué)設計與教學(xué)反思
自信的鼓勵是增強學(xué)生學(xué)習數學(xué)的自信,簡(jiǎn)單易做的題加強了每個(gè)學(xué)生學(xué)習的熱情,具體數據問(wèn)題的出現,讓學(xué)生既有好像會(huì )做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會(huì )證明我能行,從而思考解決的辦法.
(二)新知探究
1. 讓學(xué)生發(fā)現300角的終邊與2100角的終邊之間有什么關(guān)系;
2.讓學(xué)生發(fā)現300角的終邊和2100角的終邊與單位圓的交點(diǎn)的坐標有什么關(guān)系;
3.Sin2100與sin300之間有什么關(guān)系.
設計意圖
由特殊問(wèn)題的引入,使學(xué)生容易了解,實(shí)現教學(xué)過(guò)程的平淡過(guò)度,為同學(xué)們探究發(fā)現任意角 與 的三角函數值的關(guān)系做好鋪墊.
(三)問(wèn)題一般化
探究一
1.探究發(fā)現任意角 的終邊與 的終邊關(guān)于原點(diǎn)對稱(chēng);
2.探究發(fā)現任意角 的終邊和 角的終邊與單位圓的交點(diǎn)坐標關(guān)于原點(diǎn)對稱(chēng);
3.探究發(fā)現任意角 與 的三角函數值的關(guān)系.
設計意圖
首先應用單位圓,并以對稱(chēng)為載體,用聯(lián)系的觀(guān)點(diǎn),把單位圓的性質(zhì)與三角函數聯(lián)系起來(lái),數形結合,問(wèn)題的設計提問(wèn)從特殊到一般,從線(xiàn)對稱(chēng)到點(diǎn)對稱(chēng)到三角函數值之間的關(guān)系,逐步上升,一氣呵成誘導公式二.同時(shí)也為學(xué)生將要自主發(fā)現、探索公式三和四起到示范作用,下面練習設計為了熟悉公式一,讓學(xué)生感知到成功的喜悅,進(jìn)而敢于挑戰,敢于前進(jìn)
(四)練習
利用誘導公式(二),口答下列三角函數值.
(1). ;(2). ;(3). .
喜悅之后讓我們重新啟航,接受新的挑戰,引入新的問(wèn)題.
(五)問(wèn)題變形
由sin3000= -sin600 出發(fā),用三角的定義引導學(xué)生求出 sin(-3000),Sin150 0值,讓學(xué)生聯(lián)想若已知sin3000= -sin600 ,能否求出sin(-3000),Sin150 0)的值. 學(xué)生自主探究
高中數學(xué)教學(xué)設計范文3
教學(xué)目標
1.明確等差數列的定義。
2.掌握等差數列的通項公式,會(huì )解決知道中的三個(gè),求另外一個(gè)的問(wèn)題
3.培養學(xué)生觀(guān)察、歸納能力。
教學(xué)重點(diǎn)
1. 等差數列的概念;
2. 等差數列的通項公式
教學(xué)難點(diǎn)
等差數列“等差”特點(diǎn)的理解、把握和應用
教具準備
投影片1張
教學(xué)過(guò)程
(I)復習回顧
師:上兩節課我們共同學(xué)習了數列的定義及給出數列的兩種方法通項公式和遞推公式。這兩個(gè)公式從不同的角度反映數列的特點(diǎn),下面看一些例子。(放投影片)
(Ⅱ)講授新課
師:看這些數列有什么共同的.特點(diǎn)?
1,2,3,4,5,6; ①
10,8,6,4,2,…; ②
生:積極思考,找上述數列共同特點(diǎn)。
對于數列①(1≤n≤6);(2≤n≤6)
對于數列②-2n(n≥1)(n≥2)
對于數列③(n≥1)(n≥2)
共同特點(diǎn):從第2項起,第一項與它的前一項的差都等于同一個(gè)常數。
師:也就是說(shuō),這些數列均具有相鄰兩項之差“相等”的特點(diǎn)。具有這種特點(diǎn)的數列,我們把它叫做等差數。
一、定義:
等差數列:一般地,如果一個(gè)數列從第2項起,每一項與空的前一項的差等于同一個(gè)常數,那么這個(gè)數列就叫做等差數列,這個(gè)常數叫做等差數列的公差,通常用字母d表示。
如:上述3個(gè)數列都是等差數列,它們的公差依次是1,-2 。
二、等差數列的通項公式
師:等差數列定義是由一數列相鄰兩項之間關(guān)系而得。若一等差數列的首項是,公差是d,則據其定義可得:
若將這n-1個(gè)等式相加,則可得:
即:即:即:……
由此可得:師:看來(lái),若已知一數列為等差數列,則只要知其首項和公差d,便可求得其通項。
如數列①(1≤n≤6)
數列②:(n≥1)
數列③:(n≥1)
由上述關(guān)系還可得:即:則:=如:三、例題講解
例1:(1)求等差數列8,5,2…的第20項
(2)-401是不是等差數列-5,-9,-13…的項?如果是,是第幾項?
解:(1)由n=20,得(2)由得數列通項公式為:由題意可知,本題是要回答是否存在正整數n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個(gè)數列的第100項。
(Ⅲ)課堂練習
生:(口答)課本P118練習3
(書(shū)面練習)課本P117練習1
師:組織學(xué)生自評練習(同桌討論)
(Ⅳ)課時(shí)小結
師:本節主要內容為:①等差數列定義。
即(n≥2)
、诘炔顢盗型椆 (n≥1)
推導出公式:(V)課后作業(yè)
一、課本P118習題3.2 1,2
二、1.預習內容:課本P116例2P117例4
2.預習提綱:
、偃绾螒玫炔顢盗械亩x及通項公式解決一些相關(guān)問(wèn)題?
、诘炔顢盗杏心男┬再|(zhì)?
【高中數學(xué)教學(xué)設計】相關(guān)文章:
高中數學(xué)教學(xué)設計優(yōu)秀10-23
高中數學(xué)單元教學(xué)設計06-19
高中數學(xué)優(yōu)秀教學(xué)設計08-05