三角形內角和教學(xué)設計

時(shí)間:2023-06-12 07:51:20 設計 我要投稿

三角形內角和教學(xué)設計14篇

  作為一名辛苦耕耘的教育工作者,時(shí)常需要準備好教學(xué)設計,編寫(xiě)教學(xué)設計有利于我們科學(xué)、合理地支配課堂時(shí)間。那么什么樣的教學(xué)設計才是好的呢?以下是小編為大家整理的三角形內角和教學(xué)設計,僅供參考,歡迎大家閱讀。

三角形內角和教學(xué)設計14篇

  三角形內角和教學(xué)設計 篇1

  【設計理念】

  新課標重視讓學(xué)生經(jīng)歷數學(xué)知識的形成過(guò)程,要求教師創(chuàng )設有效的問(wèn)題情境激發(fā)學(xué)生的參與欲望,提供足夠的時(shí)間和空間讓學(xué)生經(jīng)歷觀(guān)察、猜測、驗證、交流反思等過(guò)程,使學(xué)生在動(dòng)手操作、合作交流等活動(dòng)中親身經(jīng)歷知識的形成過(guò)程。這樣,學(xué)生不僅可以掌握知識,而且可以積累探究數學(xué)問(wèn)題的活動(dòng)經(jīng)驗,發(fā)展空間觀(guān)念和推理能力。

  【教材內容】新人教版義務(wù)教育課程標準實(shí)驗教科書(shū)四年級下冊數學(xué)第67頁(yè)例6、“做一做”及練習十六的第1、2、3題。

  【教材分析】

  三角形的內角和是三角形的一個(gè)重要特征。本課是安排在三角形的概念及分類(lèi)之后教學(xué)的,它是學(xué)生以后學(xué)習多邊形的內角和及解決其它實(shí)際問(wèn)題的基礎。教材很重視知識的探索與發(fā)現,安排兩次實(shí)驗操作活動(dòng)。教材呈現教學(xué)內容時(shí),不但重視體現知識的形成過(guò)程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間和時(shí)間,為教師靈活組織教學(xué)提供了清晰的思路。概念的.形成沒(méi)有直接給出結論,而是通過(guò)量、拼等活動(dòng),讓學(xué)生探索、實(shí)驗、交流、推理歸納出三角形的內角和是180°。

  【學(xué)情分析】

 。、在學(xué)習本課時(shí),學(xué)生已經(jīng)有了探索三角形內角和的知識基礎:知道直角和平角的度數,會(huì )用量角器度量角的度數;認識長(cháng)方形、正方形,知道他們的四個(gè)角都是直角;認識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經(jīng)知道了等腰三角形和正三角形。

 。、已經(jīng)有一部分學(xué)生知道了三角形內角和是180°,只是知其然而不知所以然。

  【教學(xué)目標】

  1通過(guò)“量、剪、拼”等活動(dòng)發(fā)現、驗證三角形的內角和是180°,并能運用這個(gè)知識解決一些簡(jiǎn)單的問(wèn)題。

  2.在觀(guān)察、猜想、操作、合作、分析交流等具體活動(dòng)中,提高動(dòng)手操作能力,積累基本的數學(xué)活動(dòng)經(jīng)驗,發(fā)展空間觀(guān)念和推理能力。

  3.在參與數學(xué)學(xué)習活動(dòng)的過(guò)程中,獲得成功的體驗,感受數學(xué)探究的嚴謹與樂(lè )趣。

  【教學(xué)重點(diǎn)】

  探索發(fā)現、驗證“三角形內角和是180°”,并運用這個(gè)知識解決實(shí)際問(wèn)題。

  【教學(xué)難點(diǎn)】驗證“三角形的內角和是180°”。

  【教(學(xué))具準備】

  多媒體課件; 銳角三角形、直角三角形、鈍角三角形紙片若干個(gè)各類(lèi)三角形(也包括等邊、等腰)、長(cháng)方形、正方形若干個(gè);每人一個(gè)量角器;一把剪刀;每人一副三角尺。

  【教學(xué)步驟】

  一、復習舊知 引出課題

  1、你已經(jīng)知道有關(guān)三角形的哪些知識?

  2、出示課題:三角形的內角和

  設計意圖:也自然導入新課。

  二、提出問(wèn)題 引發(fā)猜想

  1、提出問(wèn)題:看到這個(gè)課題,你有什么問(wèn)題想問(wèn)的?

  預設:(1)三角形的內角指的是哪些角? (2)三角形的內角和是什么意思?

 。3)三角形的內角一共是多少度?

  2、引發(fā)猜想

  猜一猜:三角形的內角和是多少度?你是怎么猜的?

  設計意圖:提出一個(gè)問(wèn)題比解決一個(gè)問(wèn)題更重要。課始在復習三角形已學(xué)知識后,引導學(xué)生提出有關(guān)三角形的新問(wèn)題,讓學(xué)生學(xué)習自己想研究的內容,無(wú)疑激發(fā)了學(xué)生的學(xué)習興趣,培養了學(xué)生的問(wèn)題意識。由于學(xué)生在平時(shí)使用三角板時(shí)已經(jīng)若隱若現地有了特殊的直角三角形的內角和是180度這一感覺(jué),因此本環(huán)節,要求學(xué)生猜一猜三角形的內角和是多少,并說(shuō)說(shuō)是怎么猜的,以激發(fā)學(xué)生已有知識經(jīng)驗,并體會(huì )到猜想要合理且有根據,同時(shí)也為推理驗證的引出作必要的鋪墊。

  三、操作驗證 形成結論

  1、交流驗證方法:

 。1)用什么方法證明三角形的內角和是180度呢?

  預設: ①量算法 ②剪拼法 ③折拼法等

 。2)三角形的個(gè)數有無(wú)數個(gè),驗證哪些三角形可以代表所有的三角形?我們的操作過(guò)程怎么分工才會(huì )做到省時(shí)又高效?

  2、動(dòng)手驗證

  3、全班匯報交流

  4、小結:剛才通過(guò)大家的動(dòng)手操作驗證了三角形的內角和是180 °度。但動(dòng)手操作會(huì )存在一定的誤差,我們的結論也可能存在偏差。

  5、方法拓展

  推理驗證:用直角三角形的內角和來(lái)證明其他三角形內角和是180 °的方法。

  6、形成結論:任意三角形的內角和是180 °。

  設計意圖:《標準》指出:“教師應激發(fā)學(xué)生的積極性,向學(xué)生提供充分從事數學(xué)活動(dòng)的機會(huì ),幫助他們在自主探索和合作交流的過(guò)程中真正理解和掌握基本的數學(xué)知識與技能、數學(xué)思想和方法,獲得廣泛的數學(xué)活動(dòng)經(jīng)驗!辈聹y后先獨立思考驗證的方法,再進(jìn)行全班交流,給學(xué)生充分的活動(dòng)時(shí)間和空間,讓學(xué)生動(dòng)手操作,使學(xué)生在量、剪、拼、折等一系列操作活動(dòng)中發(fā)現了三角形內角和是180°這個(gè)結論。在探索活動(dòng)前,交流如何使研究樣本具有代表性和全面性與如何分工做到操作省時(shí)高效這兩個(gè)問(wèn)題,培養學(xué)生嚴謹、科學(xué)正確的研究態(tài)度,讓學(xué)生在活動(dòng)中積累基本的數學(xué)活動(dòng)經(jīng)驗,為后續的學(xué)習提供了經(jīng)驗支撐。

  四、應用結論 解決問(wèn)題

  1、鞏固新知:想一想,算一算。

  2、解決問(wèn)題:等腰三角形風(fēng)箏的頂角是多少度?

  3、辨析訓練,完善結論。

  五、課堂總結,歸納研究方法

  今天這節課你學(xué)到了哪些知識?你是怎樣得到這些知識的?

  六、課后延伸:用今天所學(xué)的方法繼續研究四邊形的內角和。

  七、板書(shū)設計:

  三角形的內角和

  猜測: 三角形的內角和是180°?

  驗證: 量 拼

  結論: 任意三角形的內角和是180°

  三角形內角和教學(xué)設計 篇2

  【教材內容】

  北京市義務(wù)教育課程改革實(shí)驗教材(北京版)第九冊數學(xué)

  【教材分析】

  《三角形內角和》是北京市義務(wù)教育課程改革實(shí)驗教材(北京版)第九冊第三單元的內容,屬于空間與圖形的范疇,是在學(xué)生已經(jīng)掌握了三角形的穩定性和三角形的三邊關(guān)系相關(guān)知識后對三角形的進(jìn)一步研究,探索三角形的內角和等于180°。教材中安排了學(xué)生對不同形狀的、大小的三角形進(jìn)行度量,再運用拼、折、剪等方法發(fā)現三角形的內角和是180°。讓學(xué)生在自主探索中發(fā)現三角形的又一特性,更加深入的培養了學(xué)生的空間觀(guān)念。

  【學(xué)生分析】

  在四年級學(xué)生已經(jīng)掌握了角的概念、角的分類(lèi)和角的度量等知識。在本課之前,學(xué)生又掌握了三角形的穩定性研究了三角形的分類(lèi)。這些都為進(jìn)一步研究三角形內角和作了知識儲備和心理準備,為本課內容的教學(xué)作了鋪墊。三角形的內角和是三角形的一個(gè)重要性質(zhì)。它有助于理解三角形的三個(gè)內角之間的關(guān)系,是進(jìn)一步學(xué)習、研究幾何問(wèn)題的基礎。

  【教學(xué)目標】

  1、通過(guò)量、拼、折、剪等方法探索和發(fā)現三角形的內角和等于180°掌握并會(huì )應用這一規律解決實(shí)際的問(wèn)題。

  2、通過(guò)討論、爭辯、操作、推理發(fā)展學(xué)生動(dòng)手操作、觀(guān)察比較和抽象概括的能力。

  3、使學(xué)生掌握由特殊到一般的邏輯思辨方法和先猜想后研究問(wèn)題的方法。

  【教學(xué)重點(diǎn)】

  讓學(xué)生經(jīng)歷“三角形內角和是180度”這一知識的形成發(fā)展和應用的全過(guò)程。

  【教學(xué)難點(diǎn)】

  能利用學(xué)到的知識進(jìn)行合情的推理。

  【教具學(xué)具準備】

  課件、各種各樣的直角三角形、長(cháng)方形、剪刀、量角器、數學(xué)紙

  【教學(xué)過(guò)程】

  一、學(xué)具三角板,引入新課

  1、(出示兩個(gè)直角三角板),問(wèn):這是咱們同學(xué)非常熟悉的一種學(xué)習工具,是什么呀?(三角板)它們的外形是什么形狀的?(三角形)(課件:抽象出三角形)

  2、顧名思義一個(gè)三角形都有幾個(gè)角呀?(三個(gè))

  3、認識內角

 。1)在三角形的內部相臨兩條邊之間所夾的角叫做三角形的內角。(課件閃爍∠1)(板書(shū):三角形內角)∠1就叫做三角形的什么?這兩條邊夾的角∠2呢?∠3呢?

 。2)這個(gè)三角形內有幾個(gè)內角?(三個(gè))這個(gè)呢?(三個(gè))

 。ㄔO計意圖:由學(xué)生最熟悉的三角板引入新課,激發(fā)學(xué)生興趣的同時(shí)為后面的學(xué)習做準備)

  二、動(dòng)手操作,探索新知

 。ㄒ唬┲苯侨切蝺冉呛

 、、特殊直角三角形內角和

  1、根據我們以往對三角板的了解,你還記得每個(gè)三角形上每個(gè)內角各是多少度嗎?(生說(shuō)度數,師課件上在相應角出示度數:①90°、60°、30°,②90°、45°、45°)。

  2、觀(guān)察這兩個(gè)三角形的度數,你有什么發(fā)現?

  生1:都有一個(gè)直角,師:那我們就可以說(shuō)他們是什么三角形?(板書(shū):直角三角形)

  生2:我還發(fā)現他們內角加起來(lái)是180度。師:他真會(huì )觀(guān)察,你發(fā)現了嗎?快算一算是不是他說(shuō)的那樣?

 。ㄕn件):(1)90°+60°+30°=180°)

  那么另一個(gè)三角板的三個(gè)內角的總度數是多少?

 。ㄉ卮,師課件:(2)90°+45°+45°=180)

  3、你指的哪是180度?(生:這三個(gè)內角合起來(lái)是180度)

  4、在三角形內三個(gè)內角的總度數又簡(jiǎn)稱(chēng)為三角形的內角和。(板書(shū):和)

  5、這個(gè)直角三角形的內角和是多少度?另一個(gè)呢?

  6、你還記得180度是我們學(xué)過(guò)的是什么角嗎?(平角)趕快在你的數學(xué)紙上畫(huà)一個(gè)平角。

 。◣煶鍪疽粋(gè)平角)問(wèn):平角是什么樣的?

  7、師述:角的兩邊形成一條直線(xiàn)就是平角。也就是180度,哦,這兩個(gè)直角三角形的內角和就組成這樣的一個(gè)角呀。

 、、一般直角三角形內角和

  1、老師還為你們準備了各種各樣的`直角三角形,快拿出來(lái)看看。

  2、剛才的那兩個(gè)直角三角形的內角和是180度,你們手中的直角三角形的內角和是多少度呢?老師還為你們準備了一些學(xué)具,你能充分地利用這些學(xué)具,想辦法來(lái)研究直角三角形的內角和是多少度嗎?下面我們以小組為單位來(lái)研究,注意小組同學(xué)要明確分工可以一個(gè)人填表,另外的人一起動(dòng)手實(shí)驗看一看哪一組想出研究方法最多。

 。1)小組活動(dòng)(2)匯報

  哪個(gè)組愿意把你們的研究成果向大家展示?每個(gè)小組派代表發(fā)言。(在實(shí)物展臺上演示)

  三角形的種類(lèi)

  驗證方法

  驗證結果

  *“量一量”的方法:

  板書(shū):有一點(diǎn)誤差的度數

  *“剪一剪”的方法:

  我們在剪的時(shí)候要注意什么?剪完之后怎樣拼?拼成的是什么?你怎么知道是平角?(提示:可以在我們畫(huà)的平角上拼)(課件展示)

  現在我們也用這種方法試一試,看能不能拼成平角?(小組實(shí)驗)

  你們的直角三角形的內角和拼成的是平角嗎?也就是內角和是多少度?

  還有其他方法嗎?

  *“折一折”的方法:

  預設:①生:我是折的。師:怎樣折的?你能給大家演示嗎?

  學(xué)生演示(課件:折的過(guò)程)

 、趯W(xué)生沒(méi)有說(shuō)出來(lái),師:你們看老師還有一種方法請看:(課件:折的過(guò)程)其實(shí)折的方法和剪、撕的道理是一樣的,最后都是把三個(gè)內角拼成平角。(板書(shū):折)

  *推理:

  你們有用長(cháng)方形來(lái)研究直角三角形內角和度數的嗎?(課件:長(cháng)方形)快想一想用長(cháng)方形怎樣去研究?(課件:長(cháng)方形驗證的過(guò)程)

  這種方法就叫做推理,一般到中學(xué)以后我們經(jīng)常會(huì )用到。(板書(shū):推理)

  3、小結

 。1)通過(guò)我們剛才的研究,我們發(fā)現直角三角形的內角和都是多少度呀?(板書(shū):內角和是180°)剛才我們在測量的時(shí)候為什么會(huì )出現179度183度呢?看來(lái)只要是測量不可避免的會(huì )產(chǎn)生誤差。

 。2)在我們三角形的世界中,是只有直角三角形嗎?還有什么?(板書(shū):銳角三角形、鈍角三角形)

 。ㄔO計意圖:引導學(xué)生通過(guò)量、拼、推理等實(shí)踐操作活動(dòng),自主探究直角三角形的內角和是180度,體驗解決問(wèn)題策略的多樣化。通過(guò)這些過(guò)程使學(xué)生明白:探究問(wèn)題有不同的方法、途徑,并且方法之間可以互為驗證,達到結論的統一,從而使學(xué)生明白獲得探究問(wèn)題的方法比獲得結論更為重要。)

 。ǘ、銳角三角形、鈍角三角形的內角和

  1、請你們任意畫(huà)一個(gè)鈍角三角形,一個(gè)銳角三角形

  2、直角三角形的內角和是180度,銳角三角形、鈍角三角形的內角和又是多少度呢?你能利用我們剛才學(xué)到的知識來(lái)研究你所畫(huà)的三角形的內角和是多少度嗎?快試試,可以同桌討論。(學(xué)生操作,匯報,課件演示)我們是用什么方法來(lái)研究的?

  3、學(xué)生模仿老師操作說(shuō)理

  4、由此我們得到了銳角三角形的內角和是多少度?鈍角三角形的內角和呢?我們就可以說(shuō)所有三角形的內角和都是180度。

  師:這也是三角形的一個(gè)特性,現在你對三角形的這一特性有疑問(wèn)嗎?如果沒(méi)有的話(huà)請你用自信、肯定的語(yǔ)氣讀一讀(板書(shū):三角形的內角和是180°)。

 。ㄔO計意圖:引導學(xué)生通過(guò)直角三角形的內角和是180度來(lái)推導出銳角和鈍角三角形的內角和是180度,使學(xué)生初步掌握由特殊到一般的邏輯思辨方法。)

  三、鞏固新知,拓展應用

  我們就用三角形的這一特性來(lái)解決一些問(wèn)題

  1、兩個(gè)三角形拼成大三角形

 。1)每個(gè)三角形的內角和都是少度?

 。2)(課件把兩個(gè)三角形拼在一起)它的內角和是多少度?(這時(shí)學(xué)生答案又出現了180°和360°兩種。)師:究竟誰(shuí)對呢

  2、一個(gè)三角形去掉一部分

 。1)這是一個(gè)三角形,他的內角和是多少度?我從中剪去一個(gè)三角形他的內角和是多少度?

  再剪去一個(gè)三角形呢?(課件演示)

  你們看這兩個(gè)三角形他們的大小、形狀都怎么樣?但內角和都是180度,看來(lái)三角形的內角和的度數和他的大小形狀都無(wú)關(guān)。

 。2)我再把這個(gè)三角形剪去一部分,它的內角和是多少度?(課件:剪成四邊形)

  你能利用我們三角形的內角和是180度來(lái)研究這個(gè)四邊形的內角和是多少度嗎?

 。3)如果五邊形,你還能求出他的度數嗎?

 。ㄔO計意圖:充分利用多媒體資源幫助學(xué)生理解、消化、新的知識,能夠靈活的運用三角形的內角和等于180度。在此基礎上滲透數學(xué)的“轉化”思想和“分割”思想提高學(xué)生靈活運用和推理等各方面的能力。)

  四、總結評價(jià)、延伸知識

  通過(guò)這節課的學(xué)習研究你掌握了哪些知識?我們是怎樣研究的呢?

  師:先研究的是特殊直角三角形的內角和是180度,接著(zhù)通過(guò)量、拼等方法得到了直角三角形的內角和是180度,再利用直角三角形通過(guò)推理研究出銳角三角形和鈍角三角形的內角和是180度。

 。ㄔO計意圖:幫助學(xué)生梳理本節課的知識脈絡(luò )。)

  三角形內角和教學(xué)設計 篇3

  一、教學(xué)目標

  1.知識目標:通過(guò)測量、撕拼(剪拼)、折疊等方法,探索和發(fā)現三角形三個(gè)內角的度數和等于180°這一規律,并能實(shí)際應用。

  2.能力目標:培養學(xué)生主動(dòng)探索、動(dòng)手操作的能力。使學(xué)生養成良好的合作習慣。

  3.情感目標:讓學(xué)生體會(huì )幾何圖形內在的結構美。并充分體會(huì )到學(xué)習數學(xué)的快樂(lè )。

  二、教學(xué)過(guò)程

 。ㄒ唬﹦(chuàng )設情境,導入新課

  1、師:我們已經(jīng)認識了三角形,你知道哪些關(guān)于三角形的知識?

 。▽W(xué)生暢所欲言。)

  2、師:我們在討論三角形知識的時(shí)候,三角形中的三個(gè)好朋友卻吵了起來(lái),想知道是怎么回事嗎?讓我們一起去看看吧!

  師口述:一個(gè)大的直角三角形說(shuō):“我的個(gè)頭大,我的內角和一定比你們大!币粋(gè)鈍角三角形說(shuō):“我有一個(gè)鈍角,我的內角和才是最大的)一個(gè)小的銳角三角形很委屈的樣子說(shuō)“是這樣嗎?”,

  3、到底誰(shuí)說(shuō)的對呢?今天我們就來(lái)研究有關(guān)三角形內角和的知識。(板書(shū)課題:三角形內角和)

 。ǘ┳灾魈骄,發(fā)現規律

  1、認識什么是三角形的內角和。

  師:你知道什么是三角形的內角和嗎?

  通過(guò)學(xué)生討論,得出三角形的內角和就是三角形三個(gè)內角的度數和。

  2、探究三角形內角和的特點(diǎn)。

 、僮寣W(xué)生想一想、說(shuō)一說(shuō)怎樣才能知道三角形的內角和?

  學(xué)生會(huì )想到量一量每個(gè)三角形的內角,再相加的方法來(lái)得到三角形的內角和。(如果學(xué)生想到別的方法,只要合理的,教師就給予肯定,并鼓勵他們對自己想到的方法進(jìn)行)

 、谛〗M合作。

  通過(guò)小組合作后交流,匯報。(教師同時(shí)板書(shū)出幾個(gè)小組匯報的結果)讓學(xué)生們發(fā)現每個(gè)三角形的內角和都在180°左右。

  引導學(xué)生推測出三角形的內角和可能都是180°。

  3、驗證推測。

  讓學(xué)生動(dòng)腦筋想一想,怎樣才能驗證自己的推想是否正確,學(xué)生可能會(huì )想到用折拼或剪拼的方法來(lái)看一看三角形的三個(gè)角和起來(lái)是不是180°,也就是說(shuō)三角形的三個(gè)角能不能拼成一個(gè)平角。

 。ㄐ〗M合作驗證,教師參與其中。)

  4、全班交流,共同發(fā)現規律。

  當學(xué)生匯報用折拼或剪拼的方法的時(shí)候,指名學(xué)生上黑板展示結果。

  學(xué)生交流、師生共同總結出三角形的內角和等于180°。教師同時(shí)板書(shū)(三角形內角和等于180°。)

  5、師談話(huà):三個(gè)三角形討論的問(wèn)題現在能解決了嗎?你現在想對這三個(gè)三角形說(shuō)點(diǎn)什么嗎?(讓學(xué)生暢所欲言,對得出的三角形內角和是180°做系統的整理。)

 。ㄈ╈柟叹毩,拓展應用

  根據發(fā)現的三角形的新知識來(lái)解決問(wèn)題。

  1、完成“試一試”

  讓學(xué)生獨立完成后,集體交流。

  2、游戲:選度數,組三角形。

  請選出三個(gè)角的度數來(lái)組成一個(gè)三角形。

  150°10°15°18°20°32°

  35°50°52°54°56°58°

  130°70°72°75°60°

  學(xué)生回答的.同時(shí),教師操作課件,把學(xué)生選擇的度數拖入方框內,通過(guò)電腦計算相加是否等于180°,來(lái)驗證學(xué)生的選擇是否正確。驗證學(xué)生選的對了以后,再讓學(xué)生判斷選擇的度數所組成的三角形按角的大小分類(lèi),屬于哪種三角形。并說(shuō)出理由。

  3、“想想做做”第1題

  生獨立完成,集體訂正,并說(shuō)說(shuō)解題方法。

  4、“想想做做”第2題

  提問(wèn):為什么兩個(gè)三角形拼成一個(gè)三角形后,內角和還是180度?

  5、“想想做做”第3題

  生動(dòng)手折折看,填空。

  提問(wèn):三角形的內角和與三角形的大小有關(guān)系嗎?三角形越大,內角和也越大嗎?

  6、“想想做做”第5題

  生獨立完成,說(shuō)說(shuō)不同的解題方法。

  7、“想想做做”第6題

  學(xué)生說(shuō)說(shuō)自己的想法。

  8、思考題

  教師拿一個(gè)大三角形,提問(wèn)學(xué)生內角和是多少?用剪刀剪成兩個(gè)三角形,提問(wèn)學(xué)生內角和是多少?為什么?再剪下一個(gè)小三角形,提問(wèn)學(xué)生內角和是多少?為什么?最后建成一個(gè)四邊形,提問(wèn)學(xué)生內角和是多少?你能推導

  出四邊形的內角和公式嗎?

 。ㄋ模┱n堂總結

  本節課我們學(xué)習了哪些內容?(生自由說(shuō)),同學(xué)們說(shuō)得真好,我們要勇于從事實(shí)中尋找規律,再將規律運用到實(shí)踐當中去。

  三教后反思:

  “三角形的內角和”是小學(xué)數學(xué)教材第八冊“認識圖形”這一單元中的一個(gè)內容。通過(guò)鉆研教材,研究學(xué)情和學(xué)法,與同組老師交流,我將本課的教學(xué)目標確定為:

  1、通過(guò)測量、撕拼、折疊等方法,探索和發(fā)現三角形三個(gè)內角的度數和等于180度。

  2、已知三角形兩個(gè)角的度數,會(huì )求出第三個(gè)角的度數。

  本節教學(xué)是在學(xué)生在學(xué)習“認識三角形”的基礎上進(jìn)行的,“三角形內角和等于180度”這一結論學(xué)生早知曉,但為什么三角形內角和會(huì )一樣?這也正是本節課要與學(xué)生共同研究的問(wèn)題。所以我將這節課教學(xué)的重難點(diǎn)設定為:通過(guò)動(dòng)手操作驗證三角形的內角和是180°。教學(xué)方法主要采用了實(shí)驗法和演示法。學(xué)生的折、拼、剪等實(shí)踐活動(dòng),讓學(xué)生找到了自己的驗證方法,使他們體驗了成功,也學(xué)會(huì )了學(xué)習。下面結合自己的教學(xué),談幾點(diǎn)體會(huì )。

 。ㄒ唬﹦(chuàng )設情景,激發(fā)興趣

  俗話(huà)說(shuō):“良好的開(kāi)端是成功的一半”。一堂課的開(kāi)頭雖然只有短短幾分鐘,但它卻往往影響一堂課的成敗。因此,教師必須根據教學(xué)內容和學(xué)生實(shí)際,精心設計每一節課的開(kāi)頭導語(yǔ),用別出心裁的導語(yǔ)來(lái)激發(fā)學(xué)生的學(xué)習興趣,讓學(xué)生主動(dòng)地投入學(xué)習。本節課先創(chuàng )設畫(huà)角質(zhì)疑的情景,當學(xué)生畫(huà)不出來(lái)含有兩個(gè)直角的三角形時(shí),學(xué)生想說(shuō)為什么又不知怎么說(shuō),學(xué)生探究的興趣因此而油然而生。

 。ǘ┙o學(xué)生空間,讓他們自主探究

  “給學(xué)生一些權利,讓他們自己選擇;給學(xué)生一個(gè)條件,讓他們自己去鍛煉;給學(xué)生一些問(wèn)題,讓他們自己去探索;給學(xué)生一片空間,讓他們自己飛翔!蔽矣洸磺暹@是誰(shuí)說(shuō)過(guò)的話(huà),但它給我留下深刻的印象。它正是新課改中學(xué)生主體性的表現,是以人為本新理念的體現。所以在本節課中我注重創(chuàng )設有助于學(xué)生自主探究的機會(huì ),通過(guò)“想辦法驗證三角形內角和是180度”這一核心問(wèn)題,引發(fā)學(xué)生去思考、去探究。我讓他們將課前準備好的三角形拿出來(lái)進(jìn)行研究,學(xué)生通過(guò)折一折、拼一拼、剪一剪等活動(dòng)找到自己的驗證方法。學(xué)生拿著(zhù)他們手中的三角形,在講臺上講述自己的驗證方法,雖然有的方法很不成熟,但也可以看出這個(gè)過(guò)程中,滲透了他們發(fā)現的樂(lè )趣。這樣,學(xué)生在經(jīng)歷“再創(chuàng )造”的過(guò)程中,完成了對新知識的構建和創(chuàng )造。

 。ㄈ┮詫W(xué)定教,注重教學(xué)的有效性

  新課表指出:數學(xué)教學(xué)活動(dòng)必須建立在學(xué)生的認知發(fā)展水平和已有的知識經(jīng)驗基礎之上。要把學(xué)生的個(gè)人知識、直接經(jīng)驗和現實(shí)世界作為數學(xué)教學(xué)的重要資源,即以學(xué)定教,注重每個(gè)教學(xué)環(huán)節的有效性。本課中當我提出“為什么一個(gè)三角形中不能有兩個(gè)角是直角”時(shí),有學(xué)生指出如果有兩個(gè)直角,它就拼不成了一個(gè)三角形;也有學(xué)生說(shuō)如果有兩個(gè)直角,它就趨向于長(cháng)方形或正方形!盀槭裁磿(huì )這樣呢”?學(xué)生沉默片刻后,忽然有個(gè)學(xué)生舉手了:“因為三角形的內角和是180度,兩個(gè)直角已經(jīng)有180度了,所以不可能有兩個(gè)角是直角!边@樣的回答把本來(lái)設計的教學(xué)環(huán)節打亂了,此時(shí)我靈機把問(wèn)題拋給學(xué)生,“你們理解他說(shuō)的話(huà)嗎、你怎么知道內角和是180度、誰(shuí)都知道三角形的內角和是180度”等,當我看到大多數的已經(jīng)知道這一知識時(shí),我就把學(xué)生直接引向主題“想不想自己研究證明一下三角形的內角和是不是180度!奔ぐl(fā)了學(xué)生探究的興趣,使學(xué)生馬上投入到探究之中。

  在練習的時(shí)候,由于形式多樣,所以學(xué)生的興趣非常高漲,效果很好。通過(guò)多邊形內角和的思考以及驗證,發(fā)展了學(xué)生的空間想象力,使課堂的知識得以延伸。<

  三角形內角和教學(xué)設計 篇4

  教學(xué)目標:

  1、讓學(xué)生通過(guò)量、剪、拼、折等活動(dòng),主動(dòng)探究推導出三角形內角和是180度,并運用所學(xué)知識解決簡(jiǎn)單的實(shí)際問(wèn)題。

  2、讓學(xué)生在動(dòng)手獲取知識的過(guò)程中,培養學(xué)生的創(chuàng )新意識、探索精神和實(shí)踐能力。并通過(guò)動(dòng)手操作把三角形內角和轉化為平角的探究活動(dòng),向學(xué)生滲透"轉化"數學(xué)思想。

  3、在學(xué)生親自動(dòng)手和歸納中,使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動(dòng)學(xué)習數學(xué)的興趣。

  教學(xué)重點(diǎn):

  讓學(xué)生經(jīng)歷"三角形內角和是180°"這一知識的形成、發(fā)展和應用的全過(guò)程。

  教學(xué)難點(diǎn):

  通過(guò)小組內量一量、折一折、撕一撕等活動(dòng),驗證"三角形的內角和是180°。"

  教師準備:

  4組學(xué)具、課件

  學(xué)生準備:

  量角器、練習本

  教學(xué)過(guò)程:

  一、興趣導入,揭示課題

  1、導入:"同學(xué)們,這幾天我們都在研究什么知識?能說(shuō)說(shuō)你們都認識了哪些三角形嗎?它們各有什么特點(diǎn)?"

 。ㄉ鍪救切尾R報各類(lèi)三角形及特點(diǎn))

  2、今天老師也帶來(lái)了兩個(gè)三角形,想不想看看?(播放大屏幕)。"咦,不好,它們怎么吵起來(lái)了?快聽(tīng)聽(tīng)它們?yōu)槭裁闯称饋?lái)了?""哦,它們?yōu)榱巳齻(gè)內角和的大小而吵起來(lái)。"(設置矛盾,使學(xué)生在矛盾中去發(fā)現問(wèn)題、探究問(wèn)題。)

  3、我們來(lái)幫幫它們好嗎?

  4、那么什么叫內角?你們明白嗎?誰(shuí)來(lái)說(shuō)說(shuō)?來(lái)指指。

  你能標出三角形的三個(gè)角嗎?(生快速標好)

  數學(xué)中把三角形的這三個(gè)角稱(chēng)為三角形的內角,三個(gè)內角加起來(lái)就叫內角和。這節課我們就來(lái)研究一下"三角形的內角和"(課件片頭1)

  "同學(xué)們,用什么方法能知道三角形的內角和?"

  二、猜想驗證,探究規律 (動(dòng)手操作,探究新知)

  1.量角求和法證明:

  先聽(tīng)合作要求:拿出準備的一大一小的兩個(gè)三角形,現在我們以小組為單位來(lái)量一量它們的內角,注意分工:最好兩個(gè)人 量,一人記錄,一人計算,看哪一小組完成的好?

 。1)學(xué)生聽(tīng)合作要求后分組合作,將各種三角形的'內角和計算出來(lái)并填在小組活動(dòng)記錄表中。(觀(guān)察哪組配合好)。

 。2)指名匯報各組度量和計算內角和的結果。

 。3)觀(guān)察:從大家量、算的結果中,你發(fā)現什么?

  歸納:大家算出的三角形內角和都等于或接近180°。

 。5)思考、討論:

  通過(guò)測量計算,我們發(fā)現三角形的內角和不一定等于180度,因為是測量所以能有誤差,那么還有更好的方法能驗證呢?

  大家討論討論。

  現在各小組就行動(dòng)起來(lái)吧,看哪些小組的方法巧妙?纯茨艿贸鍪裁唇Y論?

  看同學(xué)們拼得這樣開(kāi)心,老師也想拼拼,行嗎?演示課件。

  看老師最終把三個(gè)角拼成了一個(gè)什么角?平角。是多少角?

  "180°是一個(gè)什么角?想一想,怎樣可以把三角形的三個(gè)內角拼在一起?如果拼成一個(gè)180 度的平角就可以驗證這個(gè)結論,對嗎?"(課件3)

  現在,我們可驗證三角形的內角和是(180度)?

  2、那么對任意三角形都是這個(gè)結論?請看大屏幕。

  演示銳角三角形折角。 (三個(gè)頂點(diǎn)重合后是一個(gè)平角,折好后是一個(gè)長(cháng)方形。)

  你們想不想去試一試。

  1、小組探究活動(dòng),師巡視過(guò)程中加入探究、指導(如生有困難,師可引導、有可能出現折不到一起的情況,可演示以幫助學(xué)生)

  2、"你通過(guò)哪種三角形驗證(鈍角、銳角、直角逐一匯報)",生邊出示三角形邊匯報。(如有實(shí)物投影,直接在實(shí)物投影上展示最好,也可用大三角形示范,可隨機改變順序)

  a、驗證直角三角形的內角和

  折法1中三個(gè)角拼在一起組成了一個(gè)什么角?我們可以得出什么結論?

  引導生歸納出:直角三角形的內角和是180°

  折法2 我們還可以得出什么結論?

  引導生歸納出:直角三角形中兩個(gè)銳角的和是90°。

 。矗翰槐厝齻(gè)角都折,銳角向直角方向折,兩個(gè)銳角拼成直角與直角重合即可)

  b、驗證銳角、鈍角三角形的內角和。

  歸納:銳角、鈍角三角形的內角和也是180°。

  放手發(fā)動(dòng)學(xué)生獨立完成 ,逐一種類(lèi)匯報 師給予鼓勵

  三、總結規律

  剛才,我們將直角三角形、銳角三角形、鈍角三角形的三個(gè)內角量、剪、撕,能不能給三角形內角下一個(gè)結論呢?(生:三角形的內角和是180°)對!不論是哪種三角形,不論大!我們可以得出一個(gè)怎樣的結論?

 。ㄈ切蔚膬冉呛褪180°。)

 。ń處煱鍟(shū):三角形的內角和是180°學(xué)生齊讀一遍。)

  為什么用測量計算的方法不能得到統一的結果呢?

 。康牟粶。有的量角器有誤差。)

  老師的大三角形內角和大小三角形內角和大呀?(一樣大)首尾呼應

  四、應用新知,知識升華。

 。ㄗ寣W(xué)生體驗成功的喜悅)

  現在,我們已經(jīng)知道了三角形的內角和是180°,它又能幫助我們解決那些問(wèn)題呢?

 。ㄕn件5……)

  在一個(gè)三角形中,有沒(méi)有可能有兩個(gè)鈍角呢?

 。ú豢赡。)

  追問(wèn):為什么?

 。ㄒ驗閮蓚(gè)銳角和已經(jīng)超過(guò)了180°。)

  有兩個(gè)直角的一個(gè)三角形

 。ㄒ驗槿切蔚膬冉呛褪180°,在一個(gè)三角形中如果有兩個(gè)直角,它的內角和就大于180°。)

  問(wèn):那有沒(méi)有可能有兩個(gè)銳角呢?

 。ㄓ,在一個(gè)三角形中最少有兩個(gè)內角是銳角。)

  1、 看圖求出未知角的度數。(知識的直接運用,數學(xué)信息很淺顯)

  2、做一做:

  在一個(gè)三角形中,∠1=140度, ∠3=35度,求∠2的度數、

  3、27頁(yè)第3題(數學(xué)信息較為隱藏和生活中的實(shí)際問(wèn)題)

  4.思考題、

  五、總結

  今天,我們在研究三角形的內角和時(shí)經(jīng)歷了猜想、驗證、得出結論的過(guò)程,并且運用這一結論解決了一些問(wèn)題。人們在進(jìn)行科學(xué)研究中,常常都要經(jīng)歷這樣的過(guò)程,同時(shí),它也是一種科學(xué)的研究方法。

  板書(shū)設計:

  三角形內角和

  量一量 拼一拼 折一折

  三角形內角和是180°

  三角形內角和教學(xué)設計 篇5

  一、教材分析

 。ㄒ唬┙滩牡牡匚缓妥饔谩度切蔚膬冉恰穬热葸x自人教實(shí)驗版九年義務(wù)教育七年級下冊第七章第二節第一課時(shí)。 “三角形的內角和等于180°”是三角形的一個(gè)重要性質(zhì),它揭示了組成三角形的三個(gè)角的數量關(guān)系,學(xué)好它有助于學(xué)生理解三角形內角之間的關(guān)系,也是進(jìn)一步學(xué)習《多邊形內角和》及其它幾何知識的基礎。此外,“三角形的內角和等于180°”在前兩個(gè)學(xué)段已經(jīng)知道了,但這個(gè)結論在當時(shí)是通過(guò)實(shí)驗得出的,本節要用平行線(xiàn)的性質(zhì)來(lái)說(shuō)明它,說(shuō)理中引入了輔助線(xiàn),這些都為后繼學(xué)習奠定了基礎,三角形的內角和定理也是幾何問(wèn)題代數化的體現。

 。ǘ┙虒W(xué)目標

  基于對教材以上的認識及課程標準的要求,我擬定本節課的教學(xué)目標為:

  1、知識技能:發(fā)現“三角形內角和等于180°”,并能進(jìn)行簡(jiǎn)單應用;體會(huì )方程的思想;尋求解決問(wèn)題的方法,獲得解決問(wèn)題的經(jīng)驗。

  2、數學(xué)思考:通過(guò)拼圖實(shí)踐、合作探索、交流,培養學(xué)生的邏輯推理、大膽猜想、動(dòng)手實(shí)踐等能力。

  3、解決問(wèn)題:會(huì )用三角形內角和解決一些實(shí)際問(wèn)題。

  4、情感、態(tài)度、價(jià)值觀(guān):在良好的師生關(guān)系下,建立輕松的學(xué)習氛圍,使學(xué)生樂(lè )于學(xué)數學(xué),在數學(xué)活動(dòng)中獲得成功的體驗,增強自信心,在合作學(xué)習中增強集體責任感。通過(guò)添置輔助線(xiàn)教學(xué),滲透美的思想和方法教育。

 。ㄈ┲仉y點(diǎn)的確立:

  1、重點(diǎn):“三角形的內角和等于180°”結論的探究與應用。

  2、難點(diǎn):三角形的內角和定理的證明方法(添加輔助線(xiàn))的討論

  二、學(xué)情分析

  處于這個(gè)年齡階段的'學(xué)生有能力自己動(dòng)手,他們樂(lè )于嘗試、探索、思考、交流與合作,具有分析、歸納、總結的能力,他們渴望體驗成功感和自豪感。因而老師有必要給學(xué)生充分的自由和空間,同時(shí)注意問(wèn)題的開(kāi)放性與可擴展性。

  基于以上的情況,我確立了本節課的教法和學(xué)法:

  三、教法、學(xué)法

 。ㄒ唬┙谭

  基于本節課內容的特點(diǎn)和七年級學(xué)生的心理特征,我采用了“問(wèn)題情境—建立模型—解釋、應用與拓展”的模式展開(kāi)教學(xué)。本節課采用多媒體輔助教學(xué),旨在呈現更直觀(guān)的形象,提高學(xué)生的積極性和主動(dòng)性,并提高課堂效率。

 。ǘ⿲W(xué)法

  通過(guò)學(xué)生分組拼圖得出結論,小組分析尋求說(shuō)理思路,從不同角度去分析、解決新問(wèn)題,通過(guò)基礎練習、提高練習和拓展練習發(fā)掘不同層次學(xué)生的不同能力,從而達到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘學(xué)生的創(chuàng )新精神。

  四、教學(xué)過(guò)程

  我是以6個(gè)活動(dòng)的形式展開(kāi)教學(xué)的,活動(dòng)1是為了創(chuàng )設情境引入課題,激發(fā)學(xué)生的學(xué)習興趣,活動(dòng)2是探討三角形內角和定理的證明,證明的思路與方法是本節的難點(diǎn),活動(dòng)3到5是新知識的應用,活動(dòng)6是整節課的小結提高。

  具體過(guò)程如下:活動(dòng)1:首先用多媒體展示情境提出問(wèn)題1,設計意圖是:創(chuàng )設情境,引起學(xué)生注意,調動(dòng)學(xué)生學(xué)習的積極性,激發(fā)學(xué)生的學(xué)習興趣,導入新課。在此基礎上由學(xué)生分組,用事先準備好的三角形拼圖發(fā)現三角形的內角和等于180°。設計意圖是:從豐富的拼圖活動(dòng)中發(fā)展學(xué)生思維的靈活性,創(chuàng )造性,從活動(dòng)中獲得成功的體驗,增強自信心,通過(guò)小組合作培養學(xué)生合作、交流能力。在合作學(xué)習中增強集體責任感。再用多媒體演示兩個(gè)動(dòng)畫(huà)拼圖的過(guò)程。設計意圖:讓學(xué)生更加形象直觀(guān)的理解拼圖實(shí)際上只有兩種,一種是折疊,一種是角的拼合,這為下一環(huán)節說(shuō)理中添加輔助線(xiàn)打好基礎,從而達到突破難點(diǎn)的目的。

  前面通過(guò)動(dòng)手大家都知道了三角形的內角和等于180°這個(gè)結論,那么你們是否能利用我們前面所學(xué)的有關(guān)知識來(lái)說(shuō)明一下道理呢?請看問(wèn)題2,請各小組互相討論一下,討論完后請派一個(gè)代表上來(lái)說(shuō)明你們小組的思路[學(xué)生的說(shuō)理方法可能有四種(板書(shū)添輔助線(xiàn)的四種可能并用多媒體演示證明方法)]設計的目的:通過(guò)添置輔助線(xiàn)教學(xué),滲透美的思想和方法教育,突破本節的難點(diǎn),了解輔助線(xiàn)也為后繼學(xué)習打下基礎。在說(shuō)理過(guò)程中,更加深刻地理解多種拼圖方法。同時(shí)讓學(xué)生上板分析說(shuō)理過(guò)程是為了培養學(xué)生的語(yǔ)言表達能力,邏輯思維能力,多種思路的分析是為了培養學(xué)生的發(fā)散性思維。

  通過(guò)活動(dòng)3中問(wèn)題的解決加深學(xué)生對三角形內角和的理解,初步應用新知識,解決一些簡(jiǎn)單的問(wèn)題,培養學(xué)生運用方程思想解幾何問(wèn)題的能力。

  活動(dòng)4向學(xué)生展示分析問(wèn)題的基本方法,培養學(xué)生思維的廣闊性、數學(xué)語(yǔ)言的表達能力。把問(wèn)題中的條件進(jìn)一步簡(jiǎn)化為學(xué)生用輔助線(xiàn)解決問(wèn)題作好鋪墊。同時(shí)培養學(xué)生建模能力。

  活動(dòng)5通過(guò)兩上實(shí)際問(wèn)題的解決加深學(xué)生對所學(xué)知識的理解、應用。培養學(xué)生建模的思想及能力。

  活動(dòng)6的設計目的發(fā)揮學(xué)生主體意識,培養學(xué)生語(yǔ)言概括能力。

  【教學(xué)設計說(shuō)明】

  1、《數學(xué)課程標準》指出:“本學(xué)段(7~9年級)的數學(xué)應結合具體的數學(xué)內容,采用?問(wèn)題情境——建立模型——解釋、應用與拓展?的模式展開(kāi),讓學(xué)生經(jīng)歷知識的形成與應用的過(guò)程…… ”因此,在本節課的教學(xué)中,我不斷的創(chuàng )造自主探究與合作交流的學(xué)習環(huán)境,讓學(xué)生有充分的時(shí)間和空間去動(dòng)手操作,去觀(guān)察分析,去得出結論,并體驗成功,共享成功、

  2、體現自主學(xué)習、合作交流的新課程理念、無(wú)論是例題還是習題的教學(xué)均采用“嘗試—交流—討論”的方式,充分發(fā)揮學(xué)生的主體性,教師起引導、點(diǎn)撥的作用、

  3、結合評價(jià)表,對學(xué)生的課堂表現進(jìn)行激勵性的評價(jià),一方面有利于調動(dòng)學(xué)生的積極性,另一方面有利于學(xué)生進(jìn)行自我反思。

  三角形內角和教學(xué)設計 篇6

  教學(xué)內容:

  教材第67頁(yè)例6、“做一做”及教材第69頁(yè)練習十六第1~3題。

  教學(xué)目標:

  1.通過(guò)動(dòng)手操作,使學(xué)生理解并掌握三角形的內角和是180°的結論。

  2.能運用三角形的內角和是180°這一結論,求三角形中未知角的度數。

  3.培養學(xué)生動(dòng)手動(dòng)腦及分析推理能力。

  重點(diǎn)難點(diǎn):

  掌握三角形的內角和是180°。

  教學(xué)準備:

  三角形卡片、量角器、直尺。

  導學(xué)過(guò)程

  一、復習

  1、什么是平角?平角是多少度?

  2、計算角的度數。

  3、回憶三角形的相關(guān)知識。(出示直角三角形、銳角三角形、鈍角三角形)

  二、新知

 。ㄔO計意圖:讓學(xué)生經(jīng)歷質(zhì)疑驗證結論這樣的思維過(guò)程,真正整體感知三角形內角和的知識,真正驗證了“實(shí)踐出真知” 的道理,這樣的教學(xué),將三角形內角和置于平面圖形內角和的大背景中,拓展了三角形內角和的數學(xué)知識背景,滲透數學(xué)知識之間的聯(lián)系,有效地避免了新知識的“橫空出現”。同時(shí),培養學(xué)生的綜合素養)

  1、讀學(xué)卡的學(xué)習目標、任務(wù)目標,做到心里有數。

  2、揭題:課件演示什么是三角形的內角和。

  3、猜想:三角形的內角和是多少度。

  4、驗證:

 。1)初證:用一副三角板說(shuō)明直角三角形的內角和是180°。

 。2)質(zhì)疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

 。3)再證:請按學(xué)卡提示,拿出學(xué)具,選擇自己喜歡的方式驗證三角形的內角和 是180°(師巡視)

 。4)匯報結論(清楚明白的給小組加優(yōu)秀10分)

  5、結論:修改板書(shū),把“?”去掉,寫(xiě)“是”。

  6、追問(wèn):把兩塊三角板拼在一起,拼成的`大三角形的內角和是多少?說(shuō)明三角形無(wú)論大小它的內角和都是180°(課件演示)

  7、看微課感知“偉大的發(fā)現”(設計意圖:讓學(xué)生感受自己所做的和帕斯卡發(fā)現三角形內角和是180°的過(guò)程是一樣的,從而培養孩子的自信心和創(chuàng )造力。)

  三、知識運用(課件出示練習題,生解答)

  1、填空

 。1)一個(gè)三角形,它的兩個(gè)內角度數之和是110 ,第三個(gè)內角是( ).

 。2)一個(gè)直角三角形的一個(gè)銳角是50,則另一個(gè)銳角是( )。

 。3)等邊三角形的3個(gè)內角都是( )。

 。4)一個(gè)等腰三角形,它的一個(gè)底角是50,那么它的頂角是( )。

 。5)一個(gè)等腰三角形的頂角是60,這個(gè)三角形也是( )三角形。

  2、判斷

 。1)一個(gè)三角形中最多有兩個(gè)直角。 ( )

 。2)銳角三角形任意兩個(gè)內角的和大于90。 ( )

 。3)有一個(gè)角是60的等腰三角形不一定是等邊三角形。 ( )

 。4)三角形任意兩個(gè)內角的和都大于第三個(gè)內角。 ( )

 。5)直角三角形中的兩個(gè)銳角的和等于90。 ( )

  四、拓展探究

  根據所學(xué)的知識,你能想辦法求出四邊形、五邊形的內角和嗎?

  1、小組討論。2、匯報結果。3、課件提示幫助理解。

  五、自我評價(jià)根據學(xué)卡要求給自己評出“優(yōu)”“良好”“合格”。

  六、談?wù)勛约罕竟澱n的收獲。

  教學(xué)反思

  今天我講了《三角形內角和》這部分內容,學(xué)生其實(shí)通過(guò)不同途徑已經(jīng)知道三角形內角和是180°,是不是說(shuō)這節課的重難點(diǎn)就已經(jīng)突破了,只要學(xué)生能應用知識解決問(wèn)題就算是達到這節課的教學(xué)目標了呢?我想應該好好思考教材背后要傳遞的東西。

  任何規律的發(fā)現都要經(jīng)過(guò)一個(gè)猜測、驗證的過(guò)程,不經(jīng)歷這個(gè)探究的過(guò)程,學(xué)生對于這一內容的認識就不深刻,聰明的孩子還會(huì )懷疑三角形內角和是180°嗎?。因此這個(gè)結論必須由實(shí)踐操作得出結論。所以最終我把本課定為一個(gè)實(shí)踐探究課。

  如何開(kāi)篇點(diǎn)題,是我這次要解決的第一個(gè)問(wèn)題。怎樣才能讓學(xué)生由已知順利轉向對未知的探求,怎樣直接轉向研究三個(gè)角的“和”的問(wèn)題呢?因此我只設計了三個(gè)簡(jiǎn)單的問(wèn)題然學(xué)生快速進(jìn)入主題。

  如何驗證內角和是180°,是我一直比較糾結的環(huán)節。由于小學(xué)生的知識背景有限,無(wú)法利用證明給予嚴格的驗證。只能通過(guò)動(dòng)手操作、空間想象來(lái)讓孩子體會(huì ),這些都有“實(shí)驗”的特點(diǎn),那么就都會(huì )有誤差,其實(shí)都無(wú)法嚴格的證明。但是這節課我們除了要尊重知識的嚴謹還應該尊重孩子的認知。如果通過(guò)剪拼、折疊、想象后,還有的孩子認為三角形內角和是180°值得懷疑的話(huà),這無(wú)非也是件好事,說(shuō)明孩子體會(huì )到了這些方法的不嚴謹,同時(shí)對知識有一種尊重,對自己的操作結果充滿(mǎn)自信,否則拼個(gè)差不多也可以簡(jiǎn)單的認同了內角和是180°。

  本節課的練習的設置也是努力做到有梯度、有趣味、有拓展。從開(kāi)始的搶答內角和體會(huì )三角形內角和跟大小無(wú)關(guān)、跟形狀無(wú)關(guān),到已知兩個(gè)角的度數求第三個(gè)角,這些都是鞏固。之后的,求拼接兩個(gè)完全一樣的直角三角形后,得到的圖形的內角和是多少度,求被剪開(kāi)的三角形,形成的新圖形的內角和是多少度,這些都是對三角形內角和的一次拓展。讓學(xué)生的認知發(fā)生沖突,提出挑戰。

  給學(xué)生一個(gè)平臺,她會(huì )給你一片精彩。通過(guò)動(dòng)手操作來(lái)驗證內角和是否是180°,學(xué)生最容易出現的就是把3個(gè)角剪下來(lái)拼一拼,個(gè)別人可能會(huì )想到折的方法。而這節課上有個(gè)小姑娘研究的是直角三角形,她的折法很巧妙,將兩個(gè)銳角折過(guò)來(lái),剛好拼成一個(gè)直角,這個(gè)直角和原來(lái)三角形已有的直角就重疊在了一起,兩個(gè)直角就180°。雖然我知道這樣的方法,但是通過(guò)試講,孩子們沒(méi)有這樣的表現,我就沒(méi)有奢求什么。但是今天的課堂太豐富多元了。這樣的方法都出現了讓我覺(jué)得特別值得肯定。為什么會(huì )這樣呢?我想還是因為我給了他們足夠的時(shí)間去思考。當有了空間,孩子才會(huì )施展他們的才華。這是我的一大收獲。

  前邊驗證時(shí)間過(guò)多,到練習時(shí)間就有些少,特別是求四邊形和六邊形內角和時(shí),給的時(shí)間過(guò)短,學(xué)生沒(méi)有充分思維。

  總而言之,這次的公開(kāi)課,給了我一次學(xué)習和鍛煉的機會(huì )。在教案設計時(shí),該怎么樣把每一個(gè)環(huán)節落實(shí)到位,怎么樣說(shuō)好每一句話(huà),預設好每一個(gè)環(huán)節,在教研中聽(tīng)取各位教師的點(diǎn)評,讓我有了茅塞頓開(kāi)的感覺(jué)。在此,我衷心感謝數學(xué)團隊教師對我中肯的評價(jià),感謝他們對我的直言不諱,無(wú)私奉獻自己的想法,讓我在教學(xué)中,能夠在一個(gè)輕松和諧的教學(xué)氛圍中與學(xué)生共同去探討,去發(fā)現,去學(xué)習。

  三角形內角和教學(xué)設計 篇7

  【教學(xué)目標】

  1、學(xué)生動(dòng)手操作,通過(guò)量、剪、拼、折的方法,探索并發(fā)現“三角形內角和等于180度”的規律。

  2、在探究過(guò)程中,經(jīng)歷知識產(chǎn)生、發(fā)展和變化的過(guò)程,通過(guò)交流、比較,培養策略意識和初步的空間思維能力。

  3、體驗探究的過(guò)程和方法,感受思維提升的過(guò)程,激發(fā)求知欲和探索興趣。

  【教學(xué)重點(diǎn)】探究發(fā)現和驗證“三角形的內角和180度”這一規律的過(guò)程,并歸納總結出規律。

  【教學(xué)難點(diǎn)】對不同探究方法的指導和學(xué)生對規律的靈活應用。

  【教具準備】課件、表格、學(xué)生準備不同類(lèi)型的三角形各一個(gè),量角器。

  【教學(xué)過(guò)程】

  一、激趣引入。

  1、猜謎語(yǔ)

  師:同學(xué)們喜歡猜謎語(yǔ)嗎?

  生:喜歡。

  師:那么,下面老師給大家出個(gè)謎語(yǔ)。請聽(tīng)謎面:

  形狀似座山,穩定性能堅,三竿首尾連,學(xué)問(wèn)不簡(jiǎn)單。(打一圖形)大家一起說(shuō)是什么?

  生:三角形

  2、介紹三角形按角的分類(lèi)

  師:真聰明!板書(shū)“三角形”!那么,三角形按角分可以分為鈍角三角形、直角三角形和銳角三角形這幾類(lèi)

  師分別出示卡片貼于黑板。

  3、激發(fā)學(xué)生探知心里

  師:大家會(huì )不會(huì )畫(huà)三角形?

  生:會(huì )

  師:下面請你拿出筆在本子上畫(huà)出一個(gè)三角形,但是我有個(gè)要求:畫(huà)出一個(gè)有兩個(gè)直角的三角形。試一試吧!

  生:試著(zhù)畫(huà)

  師:畫(huà)出來(lái)沒(méi)有?

  生:沒(méi)有

  師:畫(huà)不出來(lái)了,是嗎?

  生:是

  師:有兩個(gè)直角的三角形為什么畫(huà)不出來(lái)呢?這就是三角形中角的奧秘!這節課我們就來(lái)學(xué)習有關(guān)三角形角的知識“三角形內角和”(板書(shū)課題)

  二、探究新知。

  1、認識三角形的內角

  看看這三個(gè)字,說(shuō)說(shuō)看,什么是三角形的內角?

  生:就是三角形里面的角。

  師:三角形有幾個(gè)內角?

  生:3個(gè)。

  師:那么為了研究的時(shí)候比較方便,我們把這三個(gè)內角標上角1角2角3,請同學(xué)們也拿出桌子上三角形標出(教師標出)

  師:你知道什么是三角形“內角和”嗎?

  生:三角形里面的角加起來(lái)的度數。

  2、研究特殊三角形的內角和

  師:分別拿出一個(gè)直角三角板,請同學(xué)們看看這屬于什么三角形,說(shuō)出每個(gè)角的度數,那這個(gè)三角形的內角和是多少度?

  生:算一算:90°+60°+30°=180° 90°+45°+45°=180°

  師:180°也是我們學(xué)習過(guò)的什么角?

  生:平角

  師:從剛才兩個(gè)三角形的內角和的計算中,你發(fā)現了什么?

  3、研究一般三角形的`內角和

  師:猜一猜,其它三角形的內角和是多少度呢?

  生:

  4、操作、驗證

  師:同學(xué)們猜的結果各不相同,那怎么辦呀?你能想個(gè)辦法驗證一下嗎?

  要求:

 。1)每4人為一個(gè)小組。

 。2)每個(gè)小組都有不同類(lèi)型的三角形,每種類(lèi)型都需要驗證,先討論一下,怎樣才能較快的完成任務(wù)?

 。3)驗證的方法不只一種,同學(xué)們要多動(dòng)動(dòng)腦子。

  師:好,開(kāi)始活動(dòng)!

  師:巡視指導

  師:好!請一組匯報測量結果。

  生:通過(guò)測量我們發(fā)現每個(gè)三角形的三個(gè)內角和都在180度左右。

  師:其實(shí)三角形的內角和就是180度,只是因為我們在測量時(shí)存在了一些誤差,所以測量出的結果不準確。

  生:我是用撕的方法,把直角三角形三個(gè)內角撕下來(lái),拼在一起,拼成一個(gè)平角,是180度。

  師:好!非常好!

  師:有其它同學(xué)操作銳角三角形和鈍角三角形的嗎?誰(shuí)愿意到前面來(lái)展示一下?生:展示銳角三角形(撕拼)

  生:展示折一折我是用折的方法把銳角三角形三個(gè)角折在一起,組成一個(gè)平角,是180°。

  師:老師也做了一個(gè)實(shí)驗看一看是不是和大家得到結果一樣呢?(多媒體展示)

  現在老師問(wèn)同學(xué)們,三角形的內角和是多少?

  生:180度。

  師:通過(guò)驗證:我們知道了無(wú)論是銳角三角形,直角三角形還是鈍角三角形,它們的內角和都是180°。板書(shū):三角形內角和等于180度,F在讓我們用自豪的、肯定的語(yǔ)氣讀出我們的發(fā)現:“三角形的內角和是180°”。

  三、解決疑問(wèn)

  師:好!請同學(xué)們回憶一下,剛才課前老師讓同學(xué)們畫(huà)出有兩個(gè)直角的三角形畫(huà)出來(lái)了嗎?

  生:沒(méi)有

  師:那你能用這節課的知識解釋一下為什么畫(huà)不出來(lái)嗎?

  生:兩個(gè)直角是180度,沒(méi)有第三個(gè)角了。

  師:如果想畫(huà)出有兩個(gè)角是鈍角的三角形你能畫(huà)出來(lái)嗎?

  生:大于180度,也畫(huà)不出第三個(gè)角。師:所以,生活中不存在這樣的三角形。

  師:學(xué)會(huì )了知識,我們就要懂得去運用。

  四、鞏固提高。

  1、填空。

 。1)三角形的內角和是()度。

 。2)一個(gè)三角形的兩個(gè)內角分別是80°和75°,它的另一個(gè)角是()。

  2、求下面各角的度數。

 。1)∠1=27° ∠2=53° ∠3=()這是一個(gè)()三角形。

 。2)∠1=70° ∠2=50° ∠3=()這是一個(gè)()三角形。

  3、判斷每組中的三個(gè)角是不是同一個(gè)三角形中的三個(gè)內角。

 。1)80° 95° 5°( )

 。2)60° 70° 90°( )

 。3)30° 40° 50°( )

  4、紅領(lǐng)巾是一個(gè)等腰三角形,求底角的度數。(多媒體出示)

  對學(xué)生進(jìn)行思品教育。

  5、思考延伸。

  根據三角形內角和是180度,算一算四邊形和八邊形的內角和是多少?

  6、游戲:幫角找朋友每組卡片中,哪三個(gè)角可以組成三角形?)每組卡片中,哪三個(gè)角可以組成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°

  五、總結。

  三角形內角和教學(xué)設計 篇8

  教學(xué)內容:本節課的教學(xué)內容是義務(wù)教育課程標準實(shí)驗教科書(shū)數學(xué)四年級下冊第五單位的第四課時(shí)《三角形的內角和》,主要內容是:驗證三角形的內角和是180°等。

  教學(xué)內容分析:三角形的內角和是180是三角形的一個(gè)重要性質(zhì),它有助于學(xué)生理解三角形的三個(gè)內角之間的關(guān)系,也是進(jìn)一步學(xué)習的基礎。

  教學(xué)對象分析:作為四年級的學(xué)生已有一定的生活經(jīng)驗,在平時(shí)的生活中已經(jīng)接觸到三角形,在尊重學(xué)生已有的知識的基礎上和利用他們已掌握的學(xué)習方法,教師把課堂教學(xué)組織生動(dòng)、活潑,突出知識性、趣味性和生活性,使學(xué)生能在輕松愉快的氣氛中學(xué)習。

  教學(xué)目標:

  1、知識目標:學(xué)生通過(guò)量、剪、拼、擺等操作學(xué)具活動(dòng),找到新舊知識之間的聯(lián)系,主動(dòng)掌握三角形內角和是180°,并運用所學(xué)知識解決簡(jiǎn)單的實(shí)際問(wèn)題。

  2、能力目標:培養學(xué)生的觀(guān)察、歸納、概括能力和初步的空間想象力。

  3、情感目標:培養學(xué)生的創(chuàng )新意識、探索精神和實(shí)踐能力,在學(xué)生親自動(dòng)手和歸納中,感受到理性的美。

  教學(xué)重點(diǎn):理解并掌握三角形的內角和是180°。

  教學(xué)難點(diǎn):驗證所有三角形的內角之和都是180°。

  教具準備:多媒體課件、各種三角形等。

  學(xué)具準備:三角形、剪刀、量角器等。

  教學(xué)過(guò)程:

  一、出示課題,復習舊知

  1、認識三角形的內角。

 。ǎ保⿵土暼切蔚母拍。

 。ǎ玻┙榻B三角形的“內角”。

  2、理解三角形的內角“和”。

  【設計理念】通過(guò)復習三角形的概念的過(guò)程,不僅可以鞏固學(xué)生的舊知識而且可以為新知識教學(xué)提供知識鋪墊。

  二、動(dòng)手操作,探究新知

  1、通過(guò)預習,認識結論,提出疑問(wèn)

  2、驗證三角形的內角和

 。1)用“量一量、算一算”的方法進(jìn)行驗證

 、賲R報測量結果

 、诋a(chǎn)生疑問(wèn):為什么結果不統一?

 、劢鉀Q疑問(wèn):因為存在測量誤差。

 。2)用“剪一剪、拼一拼”的方法進(jìn)行驗證

 、僦笇Ъ舴。

 、俜謩e拼:銳角三角形、直角三角形、鈍角三角形。

 、垓炞C得出:三角形的內角和是180°。

 。3)用“折一折”的方法進(jìn)行驗證

 、僦笇д鄯。

 、俜謩e折:銳角三角形、直角三角形、鈍角三角形。

 、墼俅悟炞C得出:三角形的內角和是180°。

  3、看書(shū)質(zhì)疑

  【設計理念】此過(guò)程采用直觀(guān)教學(xué)手段。通過(guò)讓學(xué)生動(dòng)手量、拼等直觀(guān)演示操作直接作用于學(xué)生的感官,激活學(xué)生的思維,有助于學(xué)生的認識由具體到抽象的轉化。從而明確三角形的內角和是180°。

  三、實(shí)踐應用,解決問(wèn)題:

  1、在一個(gè)三角形中,∠1=140°,∠3=25°,求∠2的度數。

  2、求出三角形各個(gè)角的度數。(圖略)

  3、爸爸給小紅買(mǎi)了一個(gè)等腰三角形的`風(fēng)箏。它的一個(gè)底角是

  70°,它的頂角是多少度?

  4、根據三角形的內角和是180°,你能求出下面的四邊形和正六邊形的內角和嗎?(圖略)

  5、數學(xué)游戲。

  【設計理念】練習設計的優(yōu)化是優(yōu)化教學(xué)過(guò)程的一個(gè)重要方向,所以在新授后的鞏固練習中注意設計層層遞進(jìn),既有坡度、又注意變式,更有一練一得之妙,從而使學(xué)生牢固掌握新知。

  四、總結全課、延伸知識:

  1、今天你們學(xué)到了哪些知識?是怎樣獲取這些知識的?你感覺(jué)學(xué)得怎樣?

  2、知識延伸:給學(xué)生介紹一種更科學(xué)的驗證方法——轉化。

  【設計理念】課堂總結不僅要關(guān)注學(xué)生學(xué)會(huì )了什么,更要關(guān)注用什么方法學(xué),要有意識的促進(jìn)學(xué)生反思。

  板書(shū)設計: 三角形的內角和是180°

  方法:①量一量 拼角(略)

 、谄匆黄

 、壅垡徽

  【設計理念】此板書(shū)設計我力求簡(jiǎn)明扼要、布局合理、條理分明,體現了簡(jiǎn)潔美和形象美,把知識的重點(diǎn)充分地展現在學(xué)生的眼前,起了畫(huà)龍點(diǎn)睛的作用。

  三角形內角和教學(xué)設計 篇9

  教學(xué)目標:

  1、教會(huì )學(xué)生主動(dòng)探究新識的方法,學(xué)會(huì )運用轉化遷移數學(xué)思想。

  2、學(xué)生通過(guò)量、剪、拼、擺、分割等驗證三角形內角和方法的比較,主動(dòng)掌握三角形內角和是1800,并運用所學(xué)知識解決簡(jiǎn)單的實(shí)際問(wèn)題,發(fā)展學(xué)生的觀(guān)察、歸納、概括能力和初步的空間想象力。

  教學(xué)重點(diǎn): 理解并掌握三角形的內角和是180°。

  教學(xué)難點(diǎn): 驗證所有三角形的內角之和都是180°。

  教具準備: 多媒體課件。

  學(xué)具準備: 量角器、正方形、剪刀、各類(lèi)三角形(包括直角三角形、銳角三角形、鈍角三角形)

  教學(xué)過(guò)程:

  一、導入

  師:知道今天我們學(xué)習什么內容嗎?我們先來(lái)解讀一下課題,三角形,你手中有么?舉起來(lái)我看看,你拿的什么三角形?你呢?師:三角形按角分類(lèi),可分為直角三角形、鈍角三角形和銳角三角形。

  師:什么是內角?你能把你手中三角形的三個(gè)內角用角1、角2、角3標出來(lái)嗎?

  師:還有一個(gè)關(guān)鍵字“和”,什么是三角形的內角和?

  師:你認為三角形的內角和是多少度?你呢?都知道?是多少度?看來(lái)都知道了,就不用再學(xué)了吧?你還想學(xué)什么?

  師:看來(lái)我們不僅要知道三角形的內角和是180度,還要親自證明一下為什么是180度。這才真了不起呢。能證明嗎?你想怎么證明阿?

  生:量一量的方法。

  師:光量就知道了?還要算一算。

  師:這種方法可行嗎?下面咱就來(lái)試試,請同學(xué)們4人一組,分工合作,先測量?jì)冉,再計算求和。小組長(cháng)把計算的過(guò)程記錄下來(lái)。開(kāi)始吧。

  驗證:量角、求和

  小組匯報

  生一:我們組量的是銳角三角形,三個(gè)角分別是50度、60度、70度,銳角三角形的內角和是180度。

  生二:我們組量的是直角三角形,三個(gè)角分別是90度、35度、55度,直角三角形的內角和是180度。

  生三:我們組量的是鈍角三角形,三個(gè)角分別是120度、40度、20度,鈍角三角形的內角和是180度。

  師:從剛才的交流中,你發(fā)現了什么?

  生:不管是銳角三角形、直角三角形,還是鈍角三角形,內角和都是180度。

  師:下面同學(xué)測量得出180度的請你舉手,有沒(méi)有不是180度的?為什么有不同的答案呢?反思一下。我們在測量的時(shí)候容易出現誤差,得出的結論就難以讓人信服?磥(lái)似乎用量的方法還不能充分證明。(劃問(wèn)號)

  師:還敢接受更大挑戰嗎?把量角器和你的工具都收起來(lái),只借助這張三角形紙片證明出三角形的內角和是180度,你有辦法嗎?或許下面的同學(xué)還有別的方法,下面就請同學(xué)們互相交流交流,動(dòng)手試一試吧!

  師:這種方法怎么樣?(鼓掌)老師感到非常的驚喜,你看他們沒(méi)有破壞三角形,就這樣輕輕的一折,就解決了問(wèn)題,真是很巧妙。

  師:你們小組每個(gè)同學(xué)都動(dòng)腦筋了,謝謝你們。

  師:還有那個(gè)小組用的這種方法?你們也非常的聰明。還有別的方法嗎?

  師:其實(shí)大家能用3種方法證明已經(jīng)很不簡(jiǎn)單了,現在我們就能很自信的說(shuō)三角形的內角和是180度。(擦別的)

  師:其實(shí)對我來(lái)說(shuō)重要的不是知識的結論,讓老師感動(dòng)的是你們那種渴望求知,敢于探索的精神。更讓老師高興的是你們積極思考所得出的創(chuàng )造性的方法,F在我們再來(lái)一塊回顧一下。

  師:這幾種方法都足以說(shuō)明三角形的內角和是180度。(結論)

  師:剛才同學(xué)們發(fā)揮自己的.聰明才智,想了很多方法來(lái)證明。王老師也有一種方法能證明。老師這里有一個(gè)活動(dòng)角,借助課本的一邊就構成了一個(gè)三角形,請你睜大眼睛仔細觀(guān)察,你發(fā)現了什么?

  請你再仔細觀(guān)察,你發(fā)現了什么?其實(shí)兩個(gè)底角減少的度數,正是頂角增大的度數。如果我繼續按下去你覺(jué)得會(huì )怎樣?我們來(lái)看看是不是這樣,三角形呢??jì)蓚(gè)底角呢?剛才三角形的動(dòng)態(tài)過(guò)程是不是也能證明三角形的內角和是180度?

  師:看來(lái)只要大家肯動(dòng)腦筋,面對同一問(wèn)題就會(huì )有不同的解決方法。

  師:現在我們知道了“三角形的內角和是180度”,能不能用這個(gè)知識來(lái)解決一些問(wèn)題?

  生:能。

  二、遷移和應用

 。ㄒ唬c(diǎn)將臺:

  下面哪三個(gè)角是同一個(gè)三角形的內角?

 。1)30 °、60 °、45 °、90 °

 。2)52 °、46 °、54 °、80 °

 。3)45 °、46 °、90 °、45 °

 。ǘ┪視(huì )算

  1、已知∠1,∠2,∠3是三角形的三個(gè)內角。

 。1)∠1=38° ∠2=49°求∠3

 。2)∠2=65° ∠3=73° 求∠1

  2、已知∠1和∠2是直角三角形中的兩個(gè)銳角

 。1)∠1=50°求∠2

 。2)∠2=48°求∠1

  3、已知等腰三角形的一個(gè)底角是70°,它的頂角是多少度?

 。ㄈ。變變變!

 。1)一個(gè)三角形中, ∠1 、∠2、∠3。

 。2)如果把∠3剪掉,變成了幾邊形?它的內角和變成多少度呢?

 。3)如果再把∠2剪掉,剩下圖形的內角和是多少度呢?

  三、全課小結

  師:通過(guò)一節課的探索,你有什么收獲?

  生答(略)

  我的幾點(diǎn)認識:

  結合《三角形的內角和》這節課,我對空間與圖形這一部分內容,簡(jiǎn)單的談一下自己的認識。

  空間與圖形這一部分內容,可以用這幾個(gè)字來(lái)概括:難理解,難受,難掌握。在本節課的教學(xué)中,三角形的內角和概念比較抽象,學(xué)生比較難理解。尤其是讓學(xué)生探究三角形的內角和是180度,對學(xué)生來(lái)說(shuō)更是難上加難。如果光憑在頭腦中想,不動(dòng)手實(shí)踐,對于三角形的內角和,學(xué)生也只能機械記憶是180度。那如何更好的讓學(xué)生掌握和接受呢?針對這些特點(diǎn)我采用了一下幾點(diǎn)做法:

  1、根據學(xué)生的知識特點(diǎn)和生活經(jīng)驗,在原有基礎上創(chuàng )造性的使用教材。

  在教學(xué)本節課的內容時(shí),學(xué)生在自己的日常生活或大部分都已經(jīng)知道三角形的內角和是180。因材在這樣的情況下,我創(chuàng )造性的使用教材。不是讓學(xué)生通過(guò)自己動(dòng)手操作之后才發(fā)現三角形的內角和是180,而是直接把問(wèn)題拋給學(xué)生,你們知道三角形的內角和是多少度嗎?

  你們怎么知道的?能自己證明么?這樣學(xué)生從被動(dòng)學(xué)習者的角色,

  立刻轉入主動(dòng)學(xué)習者的角色之中。這樣既能使學(xué)生很好的掌握知識,又能使學(xué)生激發(fā)興趣,提高積極性。

  2、讓學(xué)生在小組交流中進(jìn)行思維的碰撞,在動(dòng)手操作的實(shí)踐過(guò)程中得到知識情感價(jià)值的升華。

  在探究的過(guò)程中,我們采用了小組合作學(xué)習方式,這樣既能給學(xué)生提供交流的空間,又能在短時(shí)間內有效學(xué)習。學(xué)生先交流方法,商定出可行的辦法和方略,然后合作進(jìn)行實(shí)踐。學(xué)生會(huì )為了一個(gè)問(wèn)題爭的面紅耳赤,在這個(gè)過(guò)程中我們驚喜的看到生在交流和動(dòng)手操作過(guò)程中得到了提高。通過(guò)自己的實(shí)踐證明,學(xué)生發(fā)現三角形的內角和的確是180度。

  總之,在教學(xué)空間與圖形的內容時(shí),一定要讓學(xué)生看到“圖形",讓學(xué)生想象"空間”。

  三角形內角和教學(xué)設計 篇10

  一、說(shuō)教材

  北師版八年級下冊第六章《證明一》,是在前面對幾何結論已經(jīng)有了一定的直觀(guān)認識的基礎上編排的,而前幾冊對有關(guān)幾何結論都曾進(jìn)行過(guò)簡(jiǎn)單的說(shuō)理,本章內容則嚴格給出這些結論的證明,并要求學(xué)生掌握證明的一般步驟及書(shū)寫(xiě)表達格式!度切蝺冉呛投ɡ淼淖C明》則是對前幾節證明的自然延續。此外,它的證明中引入了輔助線(xiàn),這些都為后繼學(xué)習奠定了基礎。

  二、說(shuō)目標

  1.知識目標:掌握“三角形內角和定理的證明”及其簡(jiǎn)單的應用。

  2.能力目標培養學(xué)生的數學(xué)語(yǔ)言表達、邏輯推理、問(wèn)題思考、組內及組間交流、動(dòng)手實(shí)踐等能力。

  3.情感、態(tài)度、價(jià)值觀(guān):

  在良好的師生關(guān)系下,建立輕松的學(xué)習氛圍,使學(xué)生體會(huì )獲得知識的成就感及與他人合作的樂(lè )趣,以增強其數學(xué)學(xué)習的自信心。

  4.教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):三角形的內角和定理的證明及其簡(jiǎn)單應用。

  難點(diǎn):三角形的內角和定理的證明方法的討論。

  三、說(shuō)學(xué)校及學(xué)生現實(shí)情況

  我校是藍田縣一所普通初中,四面非山即嶺,距藍田縣城四十里之遙。但由于國家對西部教育的大力支持,學(xué)校有遠程多媒體網(wǎng)絡(luò )教室,為師生提供了良好的學(xué)習硬件環(huán)境。我校學(xué)生幾乎全部來(lái)自本鎮農村,而我所教授的八年級四班學(xué)生,大多家庭貧苦,所以學(xué)習認真踏實(shí),有強烈的'求知欲;此外,善于鉆研是他們的特點(diǎn),并且,有較強的合作交流意識。

  四、說(shuō)教法

  根據本節課教學(xué)內容特點(diǎn),我采用啟發(fā)、引導、探索相結合的教學(xué)方法,使學(xué)生充分發(fā)揮學(xué)習主動(dòng)性、創(chuàng )造性。

  五、說(shuō)教學(xué)設計

  〈一〉、創(chuàng )設情景,直入主題

  一堂新課的引入是教師與學(xué)生活動(dòng)的開(kāi)始,而一個(gè)成功的引入,可使學(xué)生破除畏難心理,對知識在短時(shí)間內產(chǎn)生濃厚的興趣,接下來(lái)的教學(xué)活動(dòng)就變得順理成章。我的具體做法是:簡(jiǎn)單回憶舊知識,“證明的一般步驟是什么?”學(xué)生輕松做答,我肯定之后緊接著(zhù)說(shuō):“本節課就是用證明的方法學(xué)習一個(gè)熟悉的結論!是什么呢?請看大屏幕!”。盡量使問(wèn)題簡(jiǎn)單化,這樣更利于學(xué)生投入新課。

  〈二〉、交流對話(huà),引導探索

  1、巧妙提問(wèn),合理引導

  證明思想的引入時(shí),問(wèn):同學(xué)們,七年級時(shí)如何得到此結論?(留一定時(shí)間讓他們討論、交流、達成共識)學(xué)生回答后,我及時(shí)肯定并鼓勵后拋出問(wèn)題:他們的共同之處是什么?學(xué)生容易回答:湊成一平角。我說(shuō):很好!那你們用這樣的思想能證明這個(gè)命題是個(gè)真命題嗎?趕快試試吧!這樣,既引導了證明的方向,又激發(fā)了學(xué)生的學(xué)習興趣。接下來(lái)學(xué)生做題,我巡視。同時(shí)讓一學(xué)生板演。

  2、恰當示范,培養學(xué)生正確的書(shū)寫(xiě)能力

  在學(xué)生做完之后,我與他們一道分析板演同學(xué)證明是否合理,并利用多媒體給出正確書(shū)寫(xiě)方法。

  3、一題多解,放手讓學(xué)生走進(jìn)自主學(xué)習空間

  正因為學(xué)生的預習,所以他們證明的方法有所局限,這時(shí),我拋出問(wèn)題:再想想,還有其他方法嗎?將課堂時(shí)間又交還他們,將其思維推向高潮。學(xué)生思考,繼而熱烈討論,此時(shí),我又走到學(xué)生中去,對有困難的學(xué)生多加關(guān)注和指導,不放棄任何一個(gè),同時(shí),借此機會(huì )增進(jìn)教師與學(xué)困生之間的情誼,為繼續學(xué)習奠定基礎。最后,請有新方法的同學(xué)敘述其思想方法,我用大屏幕展示不同做法的合情推理過(guò)程。

  4、展示歸納,合理演繹

  利用多媒體展示三角形內角和定理的幾種表達形式,以促其學(xué)以致用。

  5、反饋練習

  用隨堂練習來(lái)鞏固學(xué)生所學(xué)新知,另一方面進(jìn)一步提高學(xué)生的書(shū)寫(xiě)能力。同時(shí),在他們作完之后,多媒體展示正確寫(xiě)法,加強教學(xué)效果。

  〈三〉、課堂小結

  1 采用讓學(xué)生感性的談?wù)J識,談收獲。設計問(wèn)題:

  2(1)、本節課我們學(xué)了什么知識?

 。2)、你有什么收獲?

  目的是發(fā)揮學(xué)生主體意識,培養其語(yǔ)言概括能力。

  六、說(shuō)教學(xué)反思

  本節課主要是以嚴謹的邏輯證明方法,驗證三角形內角和等于180度。讓學(xué)生充分體會(huì )有理有據的推理才是可靠的。而證明思想、書(shū)寫(xiě)的培養,是本節課的重點(diǎn)。自主學(xué)習、合作交流是新課程理念,也是我本節課的設計意圖。從學(xué)生課堂表現可以看出,教學(xué)效果良好。而學(xué)生的一些出乎意料的做法讓我倍感驚喜!把學(xué)生還給課堂,把課堂還給學(xué)生,也是我一貫的做法。

  三角形內角和教學(xué)設計 篇11

  教學(xué)目標:

  1、通過(guò)測量一量、拼一拼、折一折三個(gè)活動(dòng),探索和發(fā)現三角形三個(gè)內角的度數和等于180°。

  2、已知三角形兩個(gè)角的度數,會(huì )求出第三個(gè)角的度數。

  3、經(jīng)歷三角形內角和的研究方法,感受數學(xué)研究方法。

  教學(xué)重點(diǎn):

  1、探索和發(fā)現三角形三個(gè)內角的度數和等于180°。

  2、已知三角形兩個(gè)角的度數,會(huì )求出第三個(gè)角的度數。

  教學(xué)難點(diǎn):掌握探究方法(猜想-驗證-歸納總結),學(xué)會(huì )用“轉化”的數學(xué)思想探究三角形內角和。

  教學(xué)用具:表格、課件。

  學(xué)具準備:各種三角形、剪刀、量角器。

  一、創(chuàng )設情境揭示課題。

  1、一天兩個(gè)三角形發(fā)生了爭執,他們請你們來(lái)評評理。大三角形說(shuō):“我的個(gè)頭大,所以我的.內角和一定比你大!毙∪切魏懿桓市牡卣f(shuō):“我有一個(gè)鈍角,我的內角和一定比你大!。誰(shuí)說(shuō)得有道理呢?今天讓我們來(lái)做一回裁判吧。

  生1:大三角形大(個(gè)子大)

  生2:小三角形大(有鈍角)

 。ń處煵蛔雠袛,讓學(xué)生帶著(zhù)問(wèn)題進(jìn)入新課)

  2、什么是三角形的內角和?(板書(shū):內角和)

  講解:三角形內兩條邊所夾的角就叫做這個(gè)三角形的內角。每個(gè)三角形都有三個(gè)內角,這三個(gè)內角的度數加起來(lái)就是三角形的內角和。

  二、自主探究,合作交流。

 。ㄒ唬┨岢鰡(wèn)題:

  1、你認為誰(shuí)說(shuō)得對?你是怎么想的?

  2、你有什么辦法可以比較一下這兩個(gè)三角形的內角和呢?

  生1:用量角器量一量三個(gè)內角各是多少度,把它們加起來(lái),再比較。

  生2:用拼一拼的辦法把三個(gè)角拼到一起看它們能不能組成平角。

  生3:用折一折的辦法把三個(gè)角折到一起看它們能不能組成平角

 。ǘ┨剿髋c發(fā)現

  活動(dòng)一:量一量

 。1)①了解活動(dòng)要求:(屏幕顯示)

  A、在練習本上畫(huà)一個(gè)三角形,量一量三角形三個(gè)內角的度數并標注。(測量時(shí)要認真,力求準確)

  B、把測量結果記錄在表格中,并計算三角形內角和。

  C、討論:從剛才的測量和計算結果中,你發(fā)現了什么?

 。ㄒ龑仡櫥顒(dòng)要求)

 、谛〗M合作。

 、蹍R報交流。

  你們測量了幾個(gè)三角形?它們的內角和分別是多少?從測量和計算結果中你們發(fā)現了什么?

 。ㄒ龑W(xué)生發(fā)現每個(gè)三角形的三個(gè)內角和都在180°,左右。)

 。2)提出猜想

  剛才我們通過(guò)測量和計算發(fā)現了三角形內角和都在180度左右,那你能不能大膽的猜測一下:三角形內角和是否相等?三角形的內角和等于多少度呢?(板書(shū):猜測)

  活動(dòng)二:拼一拼,驗證猜想

  這個(gè)猜想是否成立呢?我們要想辦法來(lái)驗證一下。(板書(shū)驗證)

  引導:180°,跟我們學(xué)過(guò)的什么角有關(guān)?我們課前準備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個(gè)內角轉換成一個(gè)平角呢?

 。1)小組合作,討論驗證方法。(把三個(gè)角撕下來(lái),拼在一起,3個(gè)角拼成了一個(gè)平角,所以三角形內角和就是180°)。

 。2)討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結論呢?

 。3)分組匯報,討論質(zhì)疑

 。4)課件演示,驗證結果

  活動(dòng)三:折一折

  師生一起活動(dòng),教師先讓學(xué)生看課件演示,然后拿出準備好的三角形紙艮老師一起折一折。

 。ò讶切蔚慕1折向它的對邊,使頂點(diǎn)落在對邊上,然后另外兩個(gè)角相向對折,使它們的頂點(diǎn)與角1的頂點(diǎn)互相重合,也證明了三角形內角和等于180°,)。

  討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結論?

  提問(wèn):還有沒(méi)有其它的方法?

  3、回顧兩種方法,歸納總結,得出結論。

 。1)引導學(xué)生得出結論。

  孩子們,三角形內角和到底等于多少度呢?”

  學(xué)生答:“180°!”

 。2)總結方法,齊讀結論

  我們通過(guò)動(dòng)作操作,折一折,拼一拼,把三角形的三個(gè)內角轉換成了一個(gè)平角,成功的得到了這個(gè)結論,讓我們?yōu)樽约旱某晒恼!齊讀結論。(板書(shū):得到結論)

 。3)解釋測量誤差

  為什么我們剛才通過(guò)測量,計算出來(lái)的三角形內角和不是180°,呢?

  那是因為我們在測量時(shí),由于測量工具、測量操作等各方面的原因,使我們的測量結果存在一定的誤差。實(shí)際上,三角形內角和就等于180°

 。ㄈ┗仡檰(wèn)題:

  現在你知道這兩個(gè)三角形誰(shuí)說(shuō)得對了嗎?(都不對。

  為什么?請大家一起,自信肯定的告訴我。

  生:因為三角形內角和等于1800180°。(齊讀)

  三、鞏固深化,加深理解。

  1、試一試:數學(xué)書(shū)28頁(yè)第3題

  ∠A=180°-90°-30°

  2、練一練:數學(xué)書(shū)29頁(yè)第一題(生獨立解決)

  ∠A=180°-75°-28°

  3、小法官:數學(xué)書(shū)29頁(yè)第二題

  四、回顧課堂,滲透數學(xué)方法。

  1、總結:猜想—驗證—歸納—應用的數學(xué)方法。

  2、介紹:三角形內角和等于180度這個(gè)結論的由來(lái);數學(xué)領(lǐng)域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。

  3、課堂延伸活動(dòng):探索——多邊形內角和

  板書(shū)設計:

  探索與發(fā)現(一)

  三角形內角和等于180°

  三角形內角和教學(xué)設計 篇12

  設計思路

  遵循由特殊到一般的規律進(jìn)行探究活動(dòng)是這節課設計的主要特點(diǎn)之一。學(xué)生對三角尺上每個(gè)角的度數比較熟悉,就從這里入手。先讓學(xué)生算出每塊三角尺三個(gè)內角的和是180°,引發(fā)學(xué)生的猜想:其它三角形的內角和也是180°嗎?接著(zhù),引導學(xué)生小組合作,任意畫(huà)出不同類(lèi)型的三角形,用通過(guò)量一量、算一算,得出三角形的內角和是180°或接近180°(測量誤差),再引導學(xué)生通過(guò)剪拼的方法發(fā)現:各類(lèi)三角形的三個(gè)內角都可以拼成一個(gè)平角。再利用課件演示進(jìn)一步驗證,由此獲得三角形的內角和是180°的結論。這一系列活動(dòng)潛移默化地向學(xué)生滲透了“轉化”數學(xué)思想,為后繼學(xué)習奠定了必要的基礎。

  最后讓學(xué)生運用結論解決實(shí)際問(wèn)題,練習的安排上,注意練習層次,共安排三個(gè)層次,逐步加深。練習形式具有趣味性,激發(fā)了學(xué)生主動(dòng)解題的積極性。第一個(gè)練習從知識的直接應用到間接應用,數學(xué)信息的出現從比較顯現到較為隱藏。這些題檢測不同層次的學(xué)生是否掌握所學(xué)知識應該達到的基本要求,顧及到智力水平發(fā)展較慢和中等的同學(xué),第3個(gè)練習設計了開(kāi)放性的練習,在小組內完成。由一個(gè)同學(xué)出題,其它三個(gè)同學(xué)回答。先給出三角形兩個(gè)內角的度數,說(shuō)出另外一個(gè)內角。有唯一的答案。訓練多次后,只給出三角形一個(gè)內角,說(shuō)出其它兩個(gè)內角,答案不唯一,可以得出無(wú)數個(gè)答案。讓學(xué)生在游戲中消除疲倦激發(fā)興趣,拓展學(xué)生思維。兼顧到智力水平發(fā)展較快的同學(xué)。在整個(gè)教學(xué)設計中,本著(zhù)“學(xué)貴在思,思源于疑”的思想,不斷創(chuàng )設問(wèn)題情境,讓學(xué)生去實(shí)驗、去發(fā)現新知識的奧妙,從而讓學(xué)生在動(dòng)手操作、積極探索的活動(dòng)中掌握知識,積累數學(xué)活動(dòng)經(jīng)驗,發(fā)展空間觀(guān)念和推理能力。

  教學(xué)目標

  1、讓學(xué)生親自動(dòng)手,通過(guò)量、剪、拼等活動(dòng)發(fā)現、證實(shí)三角形內角和是180°,并會(huì )應用這一知識解決生活中簡(jiǎn)單的實(shí)際問(wèn)題。

  2、讓學(xué)生在動(dòng)手獲取知識的過(guò)程中,培養學(xué)生的創(chuàng )新意識、探索精神和實(shí)踐能力。并通過(guò)動(dòng)手操作把三角形內角和轉化為平角的探究活動(dòng),向學(xué)生滲透“轉化”數學(xué)思想。

  3、使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動(dòng)學(xué)習數學(xué)的興趣。

  教材分析

  三角形的內角和是三角形的一個(gè)重要特征。本課是安排在學(xué)習三角形的概念及分類(lèi)之后進(jìn)行的,它是學(xué)生以后學(xué)習多邊形的內角和及解決其它實(shí)際問(wèn)題的基礎。學(xué)生在掌握知識方面:已經(jīng)掌握了三角形的分類(lèi),比較熟悉平角等有關(guān)知識;能力方面:經(jīng)過(guò)三年多的學(xué)習,已具備了初步的動(dòng)手操作能力和主動(dòng)探究能力以及合作學(xué)習的習慣。

  因此,教材很重視知識的探索與發(fā)現,安排了一系列的實(shí)驗操作活動(dòng)。教材呈現教學(xué)內容時(shí),不但重視體現知識的形成過(guò)程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒(méi)有直接給出結論,而是通過(guò)量、算、拼等活動(dòng),讓學(xué)生探索、實(shí)驗、發(fā)現、討論交流、推理歸納出三角形的內角和是180°。

  教學(xué)重點(diǎn)

  讓學(xué)生經(jīng)歷“三角形內角和是180°”這一知識的形成、發(fā)展和應用的全過(guò)程。

  教學(xué)準備

  多媒體課件、學(xué)具。

  教學(xué)過(guò)程

  一、激趣引入

 。ㄒ唬┱J識三角形內角

  師:我們已經(jīng)認識了什么是三角形,誰(shuí)能說(shuō)出三角形有什么特點(diǎn)?

  生1:三角形是由三條線(xiàn)段圍成的圖形。

  生2:三角形有三個(gè)角,……

  師:請看屏幕(課件演示三條線(xiàn)段圍成三角形的過(guò)程)。

  師:三條線(xiàn)段圍成三角形后,在三角形內形成了三個(gè)角,(課件分別閃爍三個(gè)角及的弧線(xiàn)),我們把三角形里面的這三個(gè)角分別叫做三角形的內角。(這里,有必要向學(xué)生直觀(guān)介紹“內角”。)

 。ǘ┰O疑,激發(fā)學(xué)生探究新知的心理

  師:請同學(xué)們幫老師畫(huà)一個(gè)三角形,能做到嗎?(激發(fā)學(xué)生主動(dòng)學(xué)習的心理)

  生:能。

  師:請聽(tīng)要求,畫(huà)一個(gè)有兩個(gè)內角是直角的三角形,開(kāi)始。(設置矛盾,使學(xué)生在矛盾中去發(fā)現問(wèn)題、探究問(wèn)題。)

  師:有誰(shuí)畫(huà)出來(lái)啦?

  生1:不能畫(huà)。

  生2:只能畫(huà)兩個(gè)直角。

  生3:只能畫(huà)長(cháng)方形。

  師(課件演示):是不是畫(huà)成這個(gè)樣子了?哦,只能畫(huà)兩個(gè)直角。

  師:?jiǎn)?wèn)題出現在哪兒呢?這一定有什么奧秘?想不想知道?

  生:想。

  師:那就讓我們一起來(lái)研究吧!

 。ń沂久,巧妙引入新知的探究)

  二、動(dòng)手操作,探究新知

 。ㄒ唬┭芯刻厥馊切蔚膬冉呛

  師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個(gè)角的度數。(課件閃動(dòng)其中的一塊三角板)

  生:90°、60°、30°。(課件演示:由三角板抽象出三角形)

  師:也就是這個(gè)三角形各角的度數。它們的和怎樣?

  生:是180°。

  師:你是怎樣知道的?

  生:90°+60°+30°=180°。

  師:對,把三角形三個(gè)內角的度數合起來(lái)就叫三角形的內角和。

  師:(課件演示另一塊三角板的各角的度數。)這個(gè)呢?它的內角和是多少度呢?

  生:90°+45°+45°=180°。

  師:從剛才兩個(gè)三角形內角和的計算中,你發(fā)現什么?

  生1:這兩個(gè)三角形的內角和都是180°。

  生2:這兩個(gè)三角形都是直角三角形,并且是特殊的三角形。

 。ǘ┭芯恳话闳切蝺冉呛

  1、猜一猜。

  師:猜一猜其它三角形的內角和是多少度呢?同桌互相說(shuō)說(shuō)自己的看法。

  生1:180°。

  生2:不一定。

  ……

  2、操作、驗證一般三角形內角和是180°。

 。1)小組合作、進(jìn)行探究。

  師:所有三角形的內角和究竟是不是180°,你能用什么辦法來(lái)證明,使別人相信呢?

  生:可以先量出每個(gè)內角的度數,再加起來(lái)。

  師:哦,也就是測量計算,是嗎?那就請四人小組共同研究吧!

  師:每個(gè)小組都有不同類(lèi)型的'三角形。每種類(lèi)型的三角形都需要驗證,先討論一下,怎樣才能很快完成這個(gè)任務(wù)。(課前每個(gè)小組都發(fā)有銳角三角形、直角三角形、鈍角三角形,指導學(xué)生選擇解決問(wèn)題的策略,進(jìn)行合理分工,提高效率。)

 。2)小組匯報結果。

  師:請各小組匯報探究結果。

  生1:180°。

  生2:175°。

  生3:182°。

  (三)繼續探究

  師:沒(méi)有得到統一的結果。這個(gè)辦法不能使人很信服,怎么辦?還有其它辦法嗎?

  生1:有。

  生2:用拼合的辦法,就是把三角形的三個(gè)內角放在一起,可以拼成一個(gè)平角。

  師:怎樣才能把三個(gè)內角放在一起呢?

  生:把它們剪下來(lái)放在一起。

  1、用拼合的方法驗證。

  師:很好,請用不同的三角形來(lái)驗證。

  師:小組內完成,仍然先分工怎樣才能很快完成任務(wù),開(kāi)始吧。

  2、匯報驗證結果。

  師:先驗證銳角三角形,我們得出什么結論?

  生1:銳角三角形的內角拼在一起是一個(gè)平角,所以銳角三角形的內角和是180°。

  生2:直角三角形的內角和也是180°。

  生3:鈍角三角形的內角和還是180°。

  3、課件演示驗證結果。

  師:請看屏幕,老師也來(lái)驗證一下,是不是跟你們得到的結果一樣?(播放課件)

  師:我們可以得出一個(gè)怎樣的結論?

  生:三角形的內角和是180°。

 。ń處煱鍟(shū):三角形的內角和是180°學(xué)生齊讀一遍。)

  師:為什么用測量計算的方法不能得到統一的結果呢?

  生1:量的不準。

  生2:有的量角器有誤差。

  師:對,這就是測量的誤差。

  三角形內角和教學(xué)設計 篇13

  探索三角形內角和的度數以及已知兩個(gè)角度數求第三個(gè)角度數。

  教學(xué)目標:

  1、通過(guò)測量、撕拼、折疊等探索活動(dòng),使學(xué)生發(fā)現三角形內角和的度數是180?

  2、已知三角形兩個(gè)角的度數,會(huì )求第三個(gè)角的度數。

  3、培養學(xué)生動(dòng)手實(shí)踐,動(dòng)腦思考的習慣。

  教學(xué)重點(diǎn):

  了解三角形三個(gè)內角的度數。

  教學(xué)難點(diǎn):

  理解三角形三個(gè)內角大小的關(guān)系。

  教具學(xué)具準備:

  課件三角形若干量角器剪刀。

  教材與學(xué)生

  教材創(chuàng )設了一個(gè)有趣的問(wèn)題情境,通過(guò)對大小兩個(gè)三角形內角和的大小比較來(lái)激發(fā)學(xué)生探索的興趣。教材為了得到三角形內角和是180的結論安排了兩個(gè)活動(dòng),通過(guò)學(xué)生測量,折疊,撕拼來(lái)找到答案。

  學(xué)生在已有的會(huì )用量角器來(lái)度量一個(gè)角的度數的基礎上,會(huì )首先想到這種方法。但測量的誤差會(huì )導致測量不同,因此,學(xué)生會(huì )想到采取其他更好的辦法,通過(guò)親手實(shí)踐,得出結論。

  教學(xué)過(guò)程:

  一、呈現真實(shí)狀態(tài)。

  師:今天我們來(lái)研究三角形內角和度數。這里有兩個(gè)三角形,一個(gè)是大三角形,一個(gè)是小三角形(圖略),到底哪一個(gè)三角形的內角和比較大呢?

  學(xué)生各抒己見(jiàn)。

  二、提出問(wèn)題:

  師;剛才我們觀(guān)察三角形哪個(gè)內角和大,同學(xué)們有兩種不同的猜想,可以肯定,必定有錯下面我們來(lái)測量驗證。

 。1)以小組為單位請同學(xué)們拿出量角器,量一量,算一算圖中大小兩個(gè)三角形內角和度數,并做好記錄,記錄每個(gè)內角的度數。

 。2)組內交流。

 。3)全班交流。由小組匯報測出結果(三角形內角和)

 。4)師小結:我們通過(guò)測量發(fā)現,每個(gè)三角形的內角和測出結果接近180。

  三。自主探索、研究問(wèn)題、歸納總結:

  師引導提問(wèn):三角形的內角和會(huì )不會(huì )就是180呢?

 。ㄒ唬┙M內探索:

 。1)以小組為單位探索更好的辦法。

 。2)以小組為單位邊展示邊匯報探索的過(guò)程與發(fā)現的結果。

 。ㄓ械男〗M想不出來(lái),可以安排小組和小組之間進(jìn)行交流,目的是讓學(xué)生通過(guò)實(shí)踐發(fā)現結果,在探索中發(fā)現問(wèn)題,在討論中解決問(wèn)題,是學(xué)生學(xué)習到良好的學(xué)習方法)

 。3)把你沒(méi)有想到的方法動(dòng)手做一次

 。ㄊ箤W(xué)生更直觀(guān)地理解三角形的內角和是180的證明過(guò)程)

 。4)根據學(xué)生的反饋情況教師進(jìn)行操作演示。

 。ǘ┙處熝菔

  撕拼法1。教師取出三角形教具,把三個(gè)角撕下來(lái),拼在一起,如圖所示

  2.師:這三個(gè)內角放在一起你有什么發(fā)現?

  生:發(fā)現三個(gè)內角拼成一個(gè)平角。

  師:平角是多少度呢?說(shuō)明什么?

  生:180?說(shuō)明三個(gè)內角和剛好等于180。

  師:這種方法是不是適用各種三角形呢?

  3。學(xué)生每人動(dòng)手實(shí)踐,看看是不是不同的三角形是否都有這個(gè)特點(diǎn),也能拼出一個(gè)平角呢?

  進(jìn)行實(shí)驗后,結果發(fā)現同樣存在這一規律,三角形三個(gè)內角和是180。

  折疊法:師:剛才我們通過(guò)測量發(fā)現三角形內角和接近180,那是因為測量的不那么精確,所以說(shuō)“接近”,又通過(guò)撕拼方法發(fā)現三角形的三個(gè)內角剛好拼成一個(gè)平角,進(jìn)一步說(shuō)明三個(gè)內角和是180,現在再來(lái)演示另一種實(shí)驗,再次證明我們的發(fā)現。

  你們也來(lái)試一試好嗎?

  在學(xué)生完成這一實(shí)踐后肯定這一發(fā)現

  三角形三個(gè)內角和等于180?

  :充分發(fā)揮了學(xué)生的主觀(guān)能動(dòng)性,讓學(xué)生大膽去思考發(fā)言,把課堂交給學(xué)生,最后老師在演示達成共識,這樣學(xué)生學(xué)到知識印象頗深,也理解最為透徹,提高課堂教學(xué)的效率

  四。鞏固練習,知識升華。

  1.完成課本第28頁(yè)的“試一試”第三題。

  2.想一想:鈍角三角形最多有幾個(gè)鈍角?為什么?

  銳角三角形中的兩個(gè)內角和能小于90嗎?

  3.有一個(gè)四邊形,你能不用量角器而算出它的四個(gè)內角和嗎?

  試一試,看誰(shuí)算得快。

  師:誰(shuí)來(lái)說(shuō)說(shuō)自己的計算過(guò)程?

  角的和叫做三角形的內角和。(板書(shū)課題)下面請大家認真觀(guān)察這兩個(gè)算式,從結果上看,你發(fā)現了什么?

  生:它們的內角和都是 180 度。

  師:觀(guān)察的真仔細。c(diǎn)擊課件,出示多種多樣的三角形后提問(wèn))同學(xué)們,咱們都知道,這兩個(gè)三角形是特殊三角形,在我們的生活中還有許許多多不是這個(gè)樣子的三角形,請看大屏幕,這些任意三角形,它們的內角和是不是都是 180 度呢?

 。刍卮鹂赡苡卸荩

 。ㄒ环N全部說(shuō)是:)

  師:請問(wèn),你們是怎么想的,為什么這么認為?

  生: ……

  師:看來(lái),大家是通過(guò)這兩個(gè)三角形猜想的,是嗎?想不想驗證一下你們的猜想,(生:想)好,咱們一起走進(jìn)三角形王國,一起去研究它們內角和的秘密吧。◣熢谡n題“內角和”下面劃上橫線(xiàn),打上問(wèn)號)

 。ㄒ环N有一部分同學(xué)說(shuō)是,有一部分同學(xué)說(shuō)不是:)

  師:看來(lái),大家的意見(jiàn)不一致, 想不想驗證一下你們的猜想,(生:想)好,咱們一起走進(jìn)三角形王國,一起去研究它們內角和的秘密吧。◣熢谡n題“內角和”下面劃上橫線(xiàn),打上問(wèn)號)

 。ǘ﹦(dòng)手操作,探究新知

  師:老師看你們有答案了,哪位同學(xué)愿意說(shuō)一說(shuō)你的奇思妙想?

  生:我準備用量的方法。

  師:然后呢?

  生:然后把它們三個(gè)內角的度數相加起來(lái),就知道了三角形的內角和是多少?

  師:說(shuō)的真不錯,還有沒(méi)有其它的方法?

  生:我是把三角形的三個(gè)角剪下來(lái),拼在一起( 師鼓勵: 你的想法很有創(chuàng )意, 等一會(huì )兒用你的行動(dòng)來(lái)驗證你的猜想吧。

  生:……

 。ㄈ缟粫r(shí)想不到,師可引導:他是把三個(gè)內角的度數相加在一起,我們能不能想辦法把三個(gè)內角放在一起進(jìn)行觀(guān)察,看看能不能發(fā)現些什么呢?)

  師: 好啦, 老師相信咱們班的同學(xué)個(gè)個(gè)都是小數學(xué)家, 一定能找出更多的方法的, 請你們在研究之前,也像老師一樣,在三個(gè)內角上編上序號,角一、角二、角三,現在就請同學(xué)們對銳角三角形、直角三角形和鈍角三角形等各種類(lèi)型的三角形進(jìn)行研究,看看它們的內角和各有什么特點(diǎn)。咱們比一比,看一看,哪個(gè)小組的方法多,方法好!

  開(kāi)始吧。▽W(xué)生研究,師巡回指導)預設時(shí)間:5 分鐘

  師:老師看各小組已經(jīng)研究好了,哪位同學(xué)愿意上來(lái)交流一下?

  師:請你告訴大家,你是怎么研究的.,最后發(fā)現了什么結果?

 。 預設: 如果第一類(lèi)同學(xué)說(shuō)的是量的方法)

  師:你是用什么來(lái)研究的?

  生:量角器。

  師: 那請你說(shuō)一下你度量的結果好嗎?

 。 生匯報度量結果)

  師: 剛才有的同學(xué)測量的結果是180 度,有的同學(xué)測量的結果是179 度,有的同學(xué)測量的結果是182 度,各不相同,但是這些結果都比較接近于多少?

  生:180 度。

  師:那到底三角形的內角和是不是180 度呢?還有哪位同學(xué)有其它的方法進(jìn)行驗證嗎?

  生:我是先把三角形的三個(gè)角剪掉以后粘在一起,然后在量出它們三個(gè)角組成的度數。

  師:他演示的真好,你們聽(tīng)明白了嗎? 李 老師把他的過(guò)程給大家在大屏幕上演示一下。

 。◣熯呏v解邊點(diǎn)擊 FLASH :把三角形按照三個(gè)內角撕成三塊,先把角一放在右邊,再把角二放在左邊,最后把角三調個(gè)頭,插在角一角二的中間,這樣它們三個(gè)內角就形成了一個(gè)大角,角一的這條邊,角二這條邊看起來(lái)在一條直線(xiàn)上,那到底是不是在一條直線(xiàn)上呢,我們一起用直尺來(lái)量一下,師演示后問(wèn)學(xué)生:是不是在一條直線(xiàn)上,那這個(gè)大角是個(gè)什么角呢?通過(guò)剛才拼的過(guò)程,你有什么發(fā)現?)

  師:好極了,剛才這個(gè)小組的同學(xué)用拼的方法得到XX 三角形的內角和是180 度,你們還有別的方法嗎?

  生:我們還用了折的方法(生介紹方法)

  師: 你們聽(tīng)明白了嗎? 李老師把他的過(guò)程給大家在大屏幕上演示一下。

 。◣熯呏v解邊點(diǎn)擊 FLASH :先找到兩條邊的中點(diǎn),把它連起來(lái),把角一沿著(zhù)中間的這條線(xiàn)向對邊對折,再把角二向里對折,使它的頂點(diǎn)與角一對齊,最后把角三也用同樣的方法對折,這樣它們三個(gè)內角就形成了一個(gè)大角,這個(gè)大角是個(gè)什么角呢?)

  生:是個(gè)平角。180 度。

  師:除了用了量、拼、折的方法來(lái)研究以外,剛才在操作的過(guò)程中老師還發(fā)現了一個(gè)同學(xué)用了一種方法來(lái)進(jìn)行研究,大家想知道嗎?

  師:請這位同學(xué)來(lái)說(shuō)給大家聽(tīng)聽(tīng)吧!

  生:我把兩個(gè)相同的直角三角形拼成了一個(gè)長(cháng)方形,因為長(cháng)方形里面有四個(gè)直角,所以它的內角和是360 度,那么一個(gè)三角形的內角和就是180 度。

  師:剛才我們用量、拼、折、推理的方法都得到了三角形的內角和是 180 度,同學(xué)們,現在我們回想一下,剛才測量的不同結果是一個(gè)準確數還是一個(gè)近似數?為什么會(huì )出現這種情況呢?

  生 1 :量的不準。

  生 2 :有的量角器有誤差。

  師:對,這就是測量的誤差,如果測量?jì)x器再精密一些,我們的方法再準確一些,那么任意一個(gè)三角形的內角和也將是 180 度。

  師:同學(xué)們,我們剛才用不同的方法,不同的三角形研究了三角形的內角和,得到了一個(gè)相同的發(fā)現,這個(gè)發(fā)現就是?

  生:三角形的內角和是180 度。(師板書(shū))

  師:把你們偉大的發(fā)現讀一讀吧!

 。ㄈ┩卣箲,深化認識

  師:請看老師手上的這兩個(gè)三角形,左邊這個(gè)內角和是多少度?(生: 180 度)右邊呢(生:也是 180 度)

  師:現在老師把它們拼在一起,這個(gè)大三角形的內角和又是多少度呢?

 。ㄉ鸷髱熞龑w納得出:三角形的內角和與形狀大小無(wú)關(guān),組成的大三角形的內角和依然是 180 度。)

  師:剛才我們在討論學(xué)習三角形知識的時(shí)候,三角形中的兩個(gè)好朋友卻爭執了起來(lái),想知道怎么回事嗎?讓我們一起去看看吧。ǔ鍪菊n件,課件內容:一個(gè)大一些的直角三角形說(shuō):“我的個(gè)頭比你大,我的內角和一定比你大”。另一個(gè)稍小的銳角三角形說(shuō):“是這樣嗎”?)

  師:到底誰(shuí)說(shuō)的對呢?今天我們就用我們今天學(xué)到的知識來(lái)為它們解決解決吧!

  師:真不錯,你們當了一回小法官,幫助三角形兄弟解決了問(wèn)題,它倆很感謝你們,三角形王國中還有很多生活中的問(wèn)題,小博士們,你們愿意解答嗎?

  師:好,請看大屏幕!

 。ǔ鍪净A練習)在一個(gè)三角形中角一是 140 度,角三是 25 度,求角二的度數。

  生答后,師提問(wèn):你是怎樣想的?

  生陳述后,師鼓勵:說(shuō)的真好!

  出示自行車(chē)、等邊三角形的路標牌、告訴頂角求底角的房頂、直角三角形的電線(xiàn)桿架進(jìn)行練習。

 。ǔ鍪荆┬〖t的爸爸給小紅買(mǎi)了一個(gè)等腰三角形的風(fēng)箏,它的一個(gè)底角是 70 度,它的頂角是多少度?

  師:看來(lái)啊,三角形的知識在咱們生活中還有著(zhù)這么廣泛的運用呢!昨天,我們班發(fā)生了一件事情,小明不小心將鏡框上的一塊三角形玻璃摔破了,(課件呈現情境)他想重新買(mǎi)一塊玻璃安上,小明非常聰明,只帶了其中的一塊到玻璃店去,就配到了和原來(lái)一模一樣的玻璃了。你知道他帶的是哪一塊嗎?

 。A設:師:根據三角形的內角和是180 度,你能求出下面四邊形、五邊形、六邊形的內角和嗎?

  師:太棒了,這位同學(xué)把這個(gè)四邊形分割成了二個(gè)三角形求出了它的內角和,你能像他一樣棒求出五邊形和六邊形的內角和嗎?

  師: 同學(xué)們,今天我們一起學(xué)習了三角形的內角和,你有哪些收獲呢?

  師:嗯,真不錯, 你們知道嗎? 三角形的內角和等于 180 度是 法國著(zhù)名的數學(xué)家帕斯卡 在 1635 年他 12 歲時(shí)獨自發(fā)現的, 今天憑著(zhù)同學(xué)們的聰明智慧也研究出了三角形的內角和是180 度,老師為你們感到驕傲,老師相信在你們的勤奮學(xué)習和刻苦鉆研下,你們就是下一個(gè)“帕斯卡”!

  師:好,下課!同學(xué)們再見(jiàn)!

  三角形內角和教學(xué)設計 篇14

  教學(xué)內容:人教版小學(xué)數學(xué)第八冊第85頁(yè)例5及”做一做”

  教學(xué)目標:

  1、讓學(xué)生親自動(dòng)手,通過(guò)量、剪、拼等活動(dòng)發(fā)現、證實(shí)三角形內角和是180°,并會(huì )應用這一知識解決生活中簡(jiǎn)單的實(shí)際問(wèn)題。

  2、讓學(xué)生在動(dòng)手獲取知識的過(guò)程中,培養學(xué)生的創(chuàng )新意識、探索精神和實(shí)踐能力。并通過(guò)動(dòng)手操作把三角形內角和轉化為平角的探究活動(dòng),向學(xué)生滲透“轉化”數學(xué)思想

  3、在探索中體驗發(fā)現的樂(lè )趣,增強學(xué)好數學(xué)的信心、

  教學(xué)重點(diǎn)

  讓學(xué)生經(jīng)歷“三角形內角和是180°”這一知識的形成、發(fā)展和應用的全過(guò)程。

  教學(xué)難點(diǎn) :

  驗證所有三角形的內角之和都是180°

  教具準備:多媒體課件。

  學(xué)具準備:量角器、正方形、剪刀、各類(lèi)三角形(包括直角三角形、銳角三角形、鈍角三角形)

  教學(xué)過(guò)程:

  一、 設疑引思

  1、 分小組分別量出直角三角形、銳角三角形、鈍角三角形的三個(gè)內角的度數、

  2、 每小組請一位同學(xué)說(shuō)出自已量的三角形中兩個(gè)角的度數老師迅速”猜出”第三個(gè)角的度數、

  3、 設問(wèn):老師為什么能很快”猜” 出第三個(gè)角的度數呢?

  三角形還有許多奧妙,等待我們去探索、<導入新課,板書(shū)課題>

  二、 探索交流,獲取新知

  1、 量一量:每個(gè)學(xué)生將自已剛才量出的三角形的'內角和的度數相加,初步得出”三角形的內角和是180°”的結論、

  2、 折一折:將正方形紙沿對角線(xiàn)對折,使之變成兩個(gè)完全重合的三角形,發(fā)現:一個(gè)三角形的內角和就是正方形4個(gè)角內角和的一半,也就是360的一半,即180度, 初步驗證”三角形的內角和是180°”的結論、

  3、 拼一拼:學(xué)生先動(dòng)手剪拼所準備的三角形,進(jìn)一步驗證得出”三角形的內角和是180°”的結論、

  4、 師利用課件演示將一個(gè)三角形的三個(gè)角拼成一個(gè)平角的過(guò)程、

  5、 驗證:FLASH演示三種三角形割補過(guò)程

  發(fā)現1: 通過(guò)把直角三角形割補后,內角∠2,∠3 組成了一個(gè)()角,等于()度,∠1等于90度。所以直角三角形的內角和等于( )度。

  發(fā)現2:通過(guò)把鈍角、銳角三角形割補后,三角組成了一個(gè)( )角,而( )角等于( )度。所以銳角三角形和鈍角三角形的內角和都是180度。

  6、 小結:剛才能過(guò)量一量折一折拼一拼,你發(fā)現了什么?

  生說(shuō),師板書(shū):三角形的內角和———180°

  三、 應用練習,拓展提高

  1、書(shū)例5后”做一做”

  思考:為什么不能畫(huà)出一個(gè)有兩個(gè)直角的三角形?(兩個(gè)鈍角、一個(gè)直角和一個(gè)鈍角的三角形?)

  2、下面哪三個(gè)角會(huì )在同一個(gè)三角形中。

 。1)30、60、45、90

 。2)52、46、54、80

 。3)61、38、44、98

  3、走向生活:

 。1)那天,老師去買(mǎi)了一塊三角形的玻璃,我拿著(zhù)玻璃,剛到校門(mén),一不小心,碰在門(mén)上了,摔成這幾塊(撕),哎,只有再去買(mǎi)一塊,但尺寸我記不得了,該怎么辦,你們能不能幫老師想想辦法?我憑哪塊碎片能再去配一塊和原來(lái)一樣的三角形玻璃嗎?

 。ńY合學(xué)生回答進(jìn)行演示:延長(cháng)兩條邊,交于一點(diǎn),形成原來(lái)的三角形。所以:兩個(gè)角確定了,三角形玻璃形狀和大小也就確定了。)

  四 作業(yè):作業(yè)本

  五 全課總結

  總結:今天這節課我們研究了三角形的內角和,你們學(xué)到了哪些知識,有什么收獲?

  板書(shū)設計:三角形的內角和

  三角形的內角和———180°

【三角形內角和教學(xué)設計】相關(guān)文章:

《三角形的內角和》教學(xué)設計09-02

三角形內角和教學(xué)設計02-13

《三角形內角和》教學(xué)設計05-03

《三角形的內角和》教學(xué)設計05-08

三角形內角和教學(xué)設計11-18

三角形內角和教學(xué)設計15篇06-28

三角形內角和教學(xué)設計(15篇)06-28

三角形內角和教學(xué)設計(精選15篇)03-09

《三角形內角和》教學(xué)設計15篇05-08

《三角形內角和》教學(xué)設計(15篇)05-14

99久久精品免费看国产一区二区三区|baoyu135国产精品t|40分钟97精品国产最大网站|久久综合丝袜日本网|欧美videosdesexo肥婆