三角形內角和教學(xué)設計

時(shí)間:2022-06-28 19:07:23 設計 我要投稿

三角形內角和教學(xué)設計(15篇)

  作為一名人民教師,時(shí)常需要用到教學(xué)設計,教學(xué)設計是根據課程標準的要求和教學(xué)對象的特點(diǎn),將教學(xué)諸要素有序安排,確定合適的教學(xué)方案的設想和計劃。那么應當如何寫(xiě)教學(xué)設計呢?下面是小編為大家整理的三角形內角和教學(xué)設計,希望對大家有所幫助。

三角形內角和教學(xué)設計(15篇)

三角形內角和教學(xué)設計1

  【教材分析】

  《三角形內角和》是北師大版《數學(xué)》四年級下冊的內容。是在學(xué)生學(xué)習了三角形的概念及特征之后進(jìn)行的,它是掌握多邊形內角和及其他實(shí)際問(wèn)題的基礎,因此,掌握“三角形的內角和是180度”這一規律具有重要意義。教材首先出示了兩個(gè)三角形比內角和這一情境,讓學(xué)生通過(guò)測量、折疊、拼湊等方法,發(fā)現三角形的內角和是180度。教材還安排了“試一試”,“練一練”的內容。已知三角形兩個(gè)內角的度數,求出第三個(gè)角的度數。

  【學(xué)生分析】

  經(jīng)過(guò)近四年的課改實(shí)驗,孩子們已經(jīng)有了一定的自主探究,合作交流的能力。他們喜歡在實(shí)踐中感悟,在實(shí)踐中發(fā)表自己的見(jiàn)解,對數學(xué)產(chǎn)生了濃厚的興趣。1.知識方面:學(xué)生已經(jīng)掌握了三角形的概念、分類(lèi),熟悉了鈍角、直角、銳角、平角這些角的知識。2.能力方面:已具備了初步的動(dòng)手操作能力和探究能力,并且能夠進(jìn)行簡(jiǎn)單的微機操作。

  【學(xué)習目標】

  知識目標:掌握三角形內角和是180度這一規律,并能實(shí)際應用。

  能力目標: 培養學(xué)生主動(dòng)探索、動(dòng)手操作的能力。培養學(xué)生收集、整理、歸納信息的能力。使學(xué)生養成良好的合作習慣。

  情感目標: 讓學(xué)生體會(huì )幾何圖形內在的結構美。

  【教學(xué)過(guò)程】

  一、 情景激趣,質(zhì)疑猜想。

  播放動(dòng)畫(huà)片:在圖形王國中,有一天三角形大家庭里為“三角形內角和的大小”爆發(fā)了一場(chǎng)激烈的爭吵。

  鈍角三角形大聲叫著(zhù):“我的鈍角大,我的內角和一定比你們的內角和大!变J角三角形也不示弱:“我的銳角雖然比鈍角小,但我的內角和并不比你小!敝苯侨切握f(shuō):“別爭了,三角形的內角和都是180°。我們的內角和是一樣大的!

  師:想一想,什么是三角形的三個(gè)內角的和。

  生:三角形的三個(gè)內角的度數和。

  師:同學(xué)們剛才看了動(dòng)畫(huà)片你們知道誰(shuí)說(shuō)對了嗎?不知道的話(huà)想一想,猜一猜誰(shuí)說(shuō)的對?

  學(xué)生進(jìn)行猜想,自由發(fā)言。

 。ㄔO計意圖:教師借助多媒體技術(shù)創(chuàng )設問(wèn)題情境,架起數學(xué)學(xué)習與現實(shí)生活,抽象數學(xué)與具體問(wèn)題之間的橋梁,激發(fā)了學(xué)生的學(xué)習興趣。鼓勵學(xué)生主動(dòng)質(zhì)疑猜想是培養學(xué)生學(xué)會(huì )學(xué)習的重要途徑。)

  二、自主探究,驗證猜想

  師:剛才大部分同學(xué)都猜直角三角形說(shuō)的對。三角形的三個(gè)內角的和都是 180°,你能設法驗證這個(gè)猜想嗎?

  生1:能。我量出三角形的三個(gè)內角和度數,加起來(lái)是否接近180°(量的時(shí)候可能會(huì )有些誤差)。

  生2:我把三角形的三個(gè)角剪下來(lái)拼一拼是否能拼成一個(gè)平角。

  生3:我把三角形的三個(gè)角撕下來(lái),拼一拼是否180°。

  生4:我把三角形的三個(gè)角往里折,看一看這三個(gè)角是否折成一個(gè)平角。

  ……

  師:上面你們說(shuō)了不少的驗證猜想的方法,請大家用準備好的材料用你喜歡的方法,動(dòng)手驗證自己的猜想吧。▽W(xué)生把三角形的三個(gè)內角分別標上∠1、∠2、∠3,以免在剪拼時(shí)把內角搞混了。)

  學(xué)生邊實(shí)驗邊整理信息,完成實(shí)驗報告單后,學(xué)習小組內進(jìn)行交流討論。

 。ㄔO計意圖:驗證猜想為學(xué)生提供了“做數學(xué)”的機會(huì ),讓每個(gè)學(xué)生圍繞自己的猜想、決定自己的.探索方向、選擇自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,讓學(xué)生在操作中自主探究數學(xué)知識的產(chǎn)生發(fā)展過(guò)程。驗證自己的猜想,鼓勵學(xué)生用不同的方法進(jìn)行驗證,促進(jìn)學(xué)生創(chuàng )新能力的發(fā)展。)

  三、交流評價(jià),歸納結論。

  學(xué)生操作驗證,完成實(shí)驗報告單后,利用投影儀展示學(xué)生填寫(xiě)的實(shí)驗報告單。

  實(shí)驗報告單

  實(shí)驗名稱(chēng)

  三角形內角和

  實(shí)驗目的

  探究三角形內角和是多少度。

  實(shí)驗材料

  尺子

  剪刀

  量角器

  銳角三角形紙片

  直角三角形紙片

  鈍角三角形紙片

  我的方法

  我的發(fā)現

  我的表現

  自評

  互評

  學(xué)生在展示過(guò)程中,充分交流和討論實(shí)驗中各自使用的方法和發(fā)現,教師要對學(xué)生的閃光點(diǎn)及時(shí)進(jìn)行表?yè)P和鼓勵。

  師生共同歸納,得出結論:

  三角形內角和等于180°

 。ㄔO計意圖:各學(xué)習小組匯報自己的驗證過(guò)程,展示探究的成果。對學(xué)生探索發(fā)現的方法、策略進(jìn)行總結歸納,集思廣益,取長(cháng)補短達到共識。在交流、歸納過(guò)程中,及時(shí)肯定其中的閃光點(diǎn)給予表?yè)P和鼓勵,使他們體驗到成功的愉悅,促使他們獲得更大的成功。)

  四、分層練習,鞏固創(chuàng )新。

 、僬n件出示:

  師:這個(gè)三角形是什么三角形?知道幾個(gè)內角的度數?

  生:直角三角形,知道一個(gè)角是30°,還有一個(gè)角是90°!螦=90°-30°=60°。

  師:根據今天所學(xué)的知識,誰(shuí)能求出A的度數?大家自己試一試。

  學(xué)生做完后反饋講評時(shí)讓學(xué)生說(shuō)說(shuō)自己的方法。

  生1:用三角形內角的和(180°)減去30°再減去90°,算出∠A是60°。

  ∠A=180°-30°-90°=60°。

  生2:先用30°加上90°得120°再用180°減去120°也可得∠A =60°。

 、趯W(xué)生完成完成P29的第一題。

  引導學(xué)生按照前面的方法獨立完成,教師巡視,集體訂正。

 、鄄乱徊氯切蔚牧硗鈨蓚(gè)角可能各是多少度。

  同桌同學(xué)互相說(shuō)一說(shuō)。(答案不唯一)

 、苄〗M操作探究活動(dòng)。

  讓學(xué)生剪出幾個(gè)不同的四邊形,按表中所給的方法以做一做,并填一填。

  方 法

  四邊形內角和

  用量角器量出每個(gè)內角的度數,并相加。

  把四邊形四個(gè)角剪下來(lái),拼在一起。

  把四邊形分為兩個(gè)三角形。

  填表后讓學(xué)生想一想、互相說(shuō)一說(shuō),四邊形內角和是多少度?

 。ㄔO計意圖:引導學(xué)生將探究學(xué)習活動(dòng)中所獲得的結論經(jīng)驗和方法運用于探索解決簡(jiǎn)單的實(shí)際問(wèn)題。組織學(xué)生參與具有趣味性、操作性和開(kāi)放性的練習活動(dòng),讓學(xué)生在鞏固練習中培養動(dòng)手能力、實(shí)踐能力和創(chuàng )新思維。)

三角形內角和教學(xué)設計2

  教材內容:

  北師大版義務(wù)教育課程標準實(shí)驗教材四年級下冊。

  教學(xué)目標:

  1、經(jīng)歷觀(guān)察、猜想、實(shí)驗、驗證等數學(xué)活動(dòng),探索并發(fā)現三角形的內角和180°。在實(shí)驗活動(dòng)中,體驗探索的過(guò)程和方法。

  2、掌握三角形內角和是180°這一性質(zhì),并能應用這一性質(zhì)解決一些簡(jiǎn)單的問(wèn)題。

  3、經(jīng)歷探究過(guò)程,發(fā)展推理能力,感受數學(xué)的邏輯美。

  教學(xué)難點(diǎn)、重點(diǎn):經(jīng)歷觀(guān)察、猜想、實(shí)驗、驗證等數學(xué)活動(dòng),探索并發(fā)現三角形的內角和規律。

  教具準備:直角三角形、銳角三角形、鈍角三角形各3個(gè),大三角形、小三角形各1個(gè)。

  學(xué)具準備:直角三角形、銳角三角形、鈍角三角形各3個(gè)。

  教學(xué)設計意圖:

  “三角形的內角和180°”是三角形的一個(gè)重要性質(zhì),教材通過(guò)多種方法的操作實(shí)驗,讓學(xué)生確信這一個(gè)性質(zhì)的正確性。根據學(xué)生已有的知識經(jīng)驗和教材的內容特點(diǎn),本著(zhù)“學(xué)生的數學(xué)學(xué)習過(guò)程是一個(gè)自主構建自己對數學(xué)知識的理解過(guò)程”的教學(xué)理念,采用探究式教學(xué)方式,讓學(xué)生經(jīng)歷觀(guān)察、猜想、實(shí)驗、反思等數學(xué)活動(dòng),體驗知識的形成過(guò)程。整個(gè)教學(xué)設計力求改變學(xué)生的學(xué)習方式,突出學(xué)生的主體性。在教師的組織引導下,讓學(xué)生在開(kāi)放的學(xué)習過(guò)程中,自始至終處于積極狀態(tài),主動(dòng)參與學(xué)習過(guò)程,自主地進(jìn)行探索與發(fā)現,多角度和多樣化地解決問(wèn)題,從而實(shí)現知識的自我建構,掌握科學(xué)研究的方法,形成實(shí)事求事的科學(xué)探究精神。

  教學(xué)過(guò)程:

  活動(dòng)一:設疑激趣

  師:我們已經(jīng)認識了三角形,關(guān)于三角形你知道了什么?

  生1:三角形有3條邊、3個(gè)角。

  生2:三角形按角分可以分為銳角三角形、直角三角形、鈍角三角形;三角形按邊分可以分為等腰三角形和不等邊三角形。

  生3:每種三角形都至少有兩個(gè)銳角。

  師:三角形有3個(gè)角,這3個(gè)角又叫三角形的內角。三角形按內角的不同分為銳角三角形、直角三角形、鈍角三角形。

  師:能不能畫(huà)一個(gè)含有兩個(gè)直角或兩個(gè)鈍角的三角形呢?為什么?

  生1:我試著(zhù)畫(huà)過(guò),畫(huà)不出來(lái)。

  生2:因為每個(gè)三角形至少有兩個(gè)銳角,所以不可能畫(huà)出含有兩個(gè)直角或兩個(gè)鈍角的三角形。

  生3:三角形的內角和是180°,兩個(gè)直角的和已經(jīng)是180°,所以不可能。

  師:你能解釋一下什么是“三角形的內角和”嗎?你是怎樣知道“三角形的內角和是180°”的?

  生:把三角形的三個(gè)內角的度數相加就是三角形的內角和!叭切蔚膬冉呛褪180°”我是從書(shū)上看到的。

  師:你驗證過(guò)了嗎?

  生:沒(méi)有。

  師:三角形的內角和是不是180°?咱們還沒(méi)有認真地研究過(guò),接下來(lái),我們就一起來(lái)研究三角形的內角和。

  設計意圖:“我們已經(jīng)認識了三角形,關(guān)于三角形你知道什么?”課一開(kāi)始,教師就設計了一個(gè)空間容量比較大的問(wèn)題,旨在讓學(xué)生自主復習三角形的有關(guān)知識,引出三角形的內角概念。然后創(chuàng )設一個(gè)能激發(fā)學(xué)生探究欲望的問(wèn)題:“能不能畫(huà)出一個(gè)含有兩個(gè)直角或兩個(gè)鈍角的三角形呢?”有的學(xué)生通過(guò)動(dòng)手畫(huà),發(fā)現一個(gè)三角形中不可能有兩個(gè)直角或兩個(gè)鈍角;有的學(xué)生認為三角形的內角和是180°,兩個(gè)直角的和已是180°,所以不可能。這種認識可能來(lái)自于書(shū)本,也可能來(lái)自于家長(cháng)的輔導,但學(xué)生對于“三角形的內角和是180°”的體驗是沒(méi)有的,學(xué)生對所學(xué)的知識僅僅還是一種機械的識記,因此“三角形的內角和是否為180°”就成了學(xué)生急切需要探究的'問(wèn)題。

  活動(dòng)二:自主探究

  師:請同學(xué)們拿出課前準備的材料,自己想辦法驗證三角形的內角和是不是180。?

  學(xué)生動(dòng)手操作驗證。

  師:請大家靜靜地思考1分鐘,將剛才的實(shí)驗過(guò)程在腦中梳理一下,F在請把自己的研究過(guò)程、結果跟大家交流一下。

  生1:我是用量角器測量的,我量的是直角三角形:

  90。+ 42。+47。=179。

  生2:我量的也是直角三角形:

  90。+43。+48。=181。

  生3:我量的是銳角三角形:

  32。+65。+83。=180。

  生4:我量的是鈍角三角形:

  120。+32。+30。=182。

  生5:……

  師:看到這些度量結果,你有什么想法?

  生1:為什么他們測量的結果會(huì )不相同?

  生2:也許我們測量的方法不精確。

  生3:也許我們的量角器不標準。

  生4:也可能三角形的內角和不一定都是180°。

  師:是呀,用量角器度量容易出現誤差,但這些度量的結果還是比較接近的,都在180°左右。

  師:有沒(méi)有沒(méi)使用量角器來(lái)驗證的呢?

  生:我是用三個(gè)相同的三角形來(lái)接的(如圖)!1、∠2、∠3剛好拼成一個(gè)平角,所以三角形的內角和是180°。

  師:你怎么知道這三個(gè)角拼成的大角剛好是一個(gè)平角呢?有辦法驗證嗎?

  生1:用量角器測量不就知道了嗎?

  生2:用三角板的兩個(gè)直角去拼來(lái)驗證。

  生3:因為平角的兩條邊成一條直線(xiàn),所以可用直尺來(lái)檢驗。

  生4:再拿三個(gè)相同的三角形按上面的方法進(jìn)行拼,這樣6個(gè)相同的三角形,中間就可以拼出一個(gè)周角(如圖),周角的一半剛好是平角。

  師:通過(guò)剛才的驗證,可以說(shuō)明∠1、∠2、∠3拼成的角是平角,那么銳角三角形的三個(gè)內角能拼成一個(gè)平角嗎?鈍角三角形呢?請大家試一試。師:如果現在只有一個(gè)三角形怎么辦?

  生:我是將銳角三角形的三個(gè)角分別撕下來(lái),拼成一個(gè)平角,平角是180°所以銳角三角形的內角和是180°。

  師:直角三角形、鈍角三角形行嗎?來(lái)試一試。

  生1:老師,不剪下三角形的三個(gè)內角也可以驗證。只要將三角形的三個(gè)內角折拼在一起,看看是不是拼成一個(gè)平角就可以了。

  師:大家就用折拼的方法試一試。

  學(xué)生操作驗證。

  師:剛才我們除了用量角器度量的方法,同學(xué)們還想出了其他一些方法:用三個(gè)相同的三角形拼、剪拼、折拼等方法,這些方法形式上看起來(lái)不一樣,其實(shí)有共同點(diǎn)嗎?

  生:都是將三角形的三個(gè)內角拼在一起,組成一個(gè)平角來(lái)驗證三角形的內角和是不是180°。

  師:通過(guò)上面的實(shí)驗,你 可以得出什么結論?

  生:三角形的內角和是180。

  師:是任意三角形嗎?剛才我們才驗證了幾個(gè)三角形呀?怎么就可以說(shuō)是任意三角形呢?

  生:三角形按角分只有銳角三角形、直角三角形、鈍角三角形三種,剛才我們都驗證過(guò)了。

  師:(出示一個(gè)大三角形)它的內角和是多少度?如果將這個(gè)三角形縮。ǔ鍪疽粋(gè)小三角形),它的內角和又是多少度?為什么?

  生:三角形的三條邊縮短了,可它的三個(gè)角的大小沒(méi)變,所以它的內角和還是180。

  師生小結:三角形不論形狀、大小,它的內角和總是180。

  設計意圖:學(xué)生明確探究主題后,教師只為學(xué)生提供探究所需的材料,而不直接給出實(shí)驗的方法和程序,激勵學(xué)生自己想辦法實(shí)驗驗證,獲得結論。然后引導學(xué)生交流、評價(jià)、反思與提升。驗證過(guò)程中較好地體現了解決同一問(wèn)題思維方法,驗證策略的多樣性。促進(jìn)了學(xué)生發(fā)散思維能力的提高,提升了思維品質(zhì)。

  活動(dòng)三:應用拓展

  1、計算下面各個(gè)三角形中的∠B的度數。

  師:(圖2)怎樣求∠B?

  生:180。-90。-55。=35。

  師:還有不同的解法嗎?

  生:180!2-55。=35。,因為三角形的內角和是180。,其中一個(gè)直角是90。,另外兩個(gè)銳角的和剛好是90。

  師:是不是任意一個(gè)直角三角形的兩銳角和都是90。呢?能驗證一下嗎?

  生:因為任意三角形的內角和是180。,其中一個(gè)直角是90。,所以其他兩個(gè)銳角的和肯定是90。

  師:有沒(méi)有反對意見(jiàn)或表示懷疑的?從中我們可以發(fā)現一條什么規律?

  生:直角三角形的兩個(gè)銳角和是90。

  2、一個(gè)等腰三角形頂角是90。,兩個(gè)底角分別是多少度?

  3、等邊三角形的每個(gè)內角是多少度?

  師:現在你能解決為什么一個(gè)三角形里不能有兩個(gè)直角或兩個(gè)鈍角嗎?

  生:略。

  師:通過(guò)這節課的學(xué)習,你還有什么疑問(wèn)或還想研究什么問(wèn)題?

  生:三角形有內角和,三角形有外角和嗎?

  師:你知道三角形的外角在哪兒?jiǎn)?三角形有外角和,它的外角和是多少度呢?有興趣的同學(xué)請課后研究。

  課末,教師激勵學(xué)生提出新的問(wèn)題:通過(guò)這節課的學(xué)習,你還有什么疑問(wèn)或者還想研究什么問(wèn)題?培養學(xué)生的問(wèn)題意識,同時(shí)讓學(xué)生帶著(zhù)問(wèn)題走出教室,拓展學(xué)生數學(xué)學(xué)習的時(shí)間和空間。

三角形內角和教學(xué)設計3

  教學(xué)目標:

  1、通過(guò)量、剪、拼、擺等直觀(guān)操作的方法,讓學(xué)生探索并發(fā)現三角形內角和等于180度。

  2、在活動(dòng)交流中培養學(xué)生合作學(xué)習的意識和能力,讓學(xué)生經(jīng)歷猜測探索總結的數學(xué)學(xué)習過(guò)程,在實(shí)驗活動(dòng)中體驗探索的過(guò)程和方法。

  3、通過(guò)運用三角形內角和的性質(zhì)解決一些簡(jiǎn)單的問(wèn)題,使學(xué)生體會(huì )數學(xué)與現實(shí)生活的聯(lián)系,體會(huì )到數學(xué)的價(jià)值,增加學(xué)生學(xué)數學(xué)的信心和興趣。

  教學(xué)重點(diǎn):

  探索發(fā)現三角形內角和等于180并能應用。

  教學(xué)難點(diǎn):

  三角形內角和是180的探索和驗證。

  教學(xué)過(guò)程:

  一、創(chuàng )設情境,提出問(wèn)題

  師:大家喜歡猜謎語(yǔ)嗎?

  生:喜歡。

  師:下面請大家猜一個(gè)謎語(yǔ)(大屏幕出示形狀似座山,穩定性能堅。三竿首尾連,學(xué)問(wèn)不簡(jiǎn)單。

 。ù蛞粠缀螆D形))

  生:三角形。

  師:三角形中都有哪些學(xué)問(wèn)?

  生:三角形有三條邊,三個(gè)角,具有穩定性。

  生:三角形按角分,可以分成銳角三角形、直角三角形、鈍角三角形。

  生:三角形按邊分,可以分成等腰三角形,不等邊三角形,其中等腰三角形又包含了兩條邊相等的三角形和等邊三角形。

  生:一個(gè)三角形中最多只能有一個(gè)直角,最多只能有一個(gè)鈍角,最少有兩個(gè)銳角。

  生:三角形的內有和是180。

  生:(一臉疑惑)

  師:(板書(shū):三角形的內角和是180),你有什么疑惑? 生:什么是內角?

  生:每個(gè)三角形的內角和都是180嗎?

 。ǜ鶕䦟W(xué)生的問(wèn)題,在三角形的內角和是180后面加上一個(gè)?)

  二、自主探索,實(shí)踐驗證

  1、理解內角 師:什么是內角?

  生:我認為三角形的內角就是指三角形的三個(gè)角。

  師:三角形的每個(gè)角都是三角形的內角,每個(gè)三角形都有三個(gè)內角。

  2、理解內角和。

  師:那三角形的內角和又是指什么?

  生:我認為三角形的內角和就是把三角形的三個(gè)內角的度數加起來(lái)的和。

  師:為了方便,我們將三角形的每個(gè)內角編上序號1、2、3、我們叫它1、2、3,這三個(gè)角的度數和,就是這個(gè)三角形的內角和。

  3、實(shí)踐驗證

  師:每個(gè)三角形的內角和都是180嗎?用什么方法來(lái)驗證呢?

  生:量一量每個(gè)角的度數,然后加起來(lái)看看是不是180。

  師:請大家拿出課前準備的三角形,親自量一量,算一算。(學(xué)生動(dòng)手量一量)

  師:誰(shuí)愿意把你的勞動(dòng)成果和大家分享一下?

  生:我量的這個(gè)三角形的三個(gè)內角的度數分別是60、60、60,加起來(lái)一共是180。

  師:這位同學(xué)量的是一個(gè)銳角三角形,并且是比較特殊的三角形等邊三角形。

  生:我量這個(gè)三角形的三個(gè)內角的度數分別是45、45、90,加起來(lái)一共是180。

  師:這是我們三角尺中的'一個(gè),也比較特殊,是一個(gè)等腰直角三角形。

  生:我量的是三角尺中的另一個(gè),三個(gè)內角的度數分別是60、30、90,加起來(lái)一共是180 生:我量的是鈍角三角形,三個(gè)內角的度數分別是85、60、38,加起來(lái)一共是183。

  師:你發(fā)現了什么?

  生:有的三角形的內角和是180,而有的三角形的內角和卻不是180。

  師:看來(lái)三角形的內角和不一定是180。

  生:老師,測量會(huì )有誤差,量出來(lái)的不是很精確,那么求出來(lái)的結果也不夠精確。雖然不都是三個(gè)內角加起來(lái)不都是180,但都接近180。

  生:都接近180就能說(shuō)一定是180嗎?

  師:科學(xué)來(lái)不得半點(diǎn)虛假,看來(lái)這個(gè)是不能讓大家信服的。那還可以用什么方法來(lái)驗證呢?下面請同學(xué)們小組合作,發(fā)揮小組成員的智慧,充分利用大家的學(xué)具進(jìn)行驗證,比一比哪些組的方法富有新意,開(kāi)始!

 。▽W(xué)生在小組內進(jìn)行探索驗證。教師巡視,參與到學(xué)生的研究中)

  師:請每個(gè)小組選擇一個(gè)代言人,和大家分享一下你們的智慧。

  生:(邊展示邊交流)我們小組運用了折一折的方法,把三角形的三個(gè)內角都向內折,三個(gè)內角就拼成了一個(gè)平角,也就是180,所以我們小組得出三角形的內角和是180。

  師:你折的只是銳角三角形,只能證明銳角三角形的內角和是180,直角三角形,鈍角三角形是不是也是這樣的?

  生:我們小組也有折的直角三角形,鈍角三角形。

 。ㄆ渌某蓡T展示不同的三角形)

  師:看這個(gè)小組的同學(xué)想問(wèn)題多全面呀,不僅想到了用什么方法,還想到了用不同的三角形進(jìn)行驗證,老師實(shí)在是佩服你們組的智慧,讓我們把掌聲送給他們!

  師:哪個(gè)小組和他們的方法不一樣?

  生:我們小組把三角形的三個(gè)內角都撕了下來(lái),拼在了一起,正好拼成了一個(gè)平角,也就是180。我們也實(shí)驗了不同的三角形,三個(gè)內角都可以拼成平角,所以我們小組得出結論,三角形的內角和是180。

  師:這個(gè)小組的方法簡(jiǎn)便,易操作,很好。

  生:我們小組成員是這樣想的,一個(gè)長(cháng)方形有4個(gè)直角,每個(gè)直角90,那么長(cháng)方形的內角和就是360,每個(gè)長(cháng)方形都可以平均分成兩個(gè)直角三角形,每個(gè)直角三角形的內角和就是180。 師:你們小組很聰明,從長(cháng)方形的內角和聯(lián)想到直角三角形的內角和是180,從不同的角度去思考問(wèn)題,謝謝你為我們提供了這么好的方法!

  4、小結

  師:剛才同學(xué)們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出了無(wú)論是什么樣的三角形的內角和都是1800,你還有什么疑問(wèn)嗎?

  生:沒(méi)有。

  師:(去掉問(wèn)號)那就讓我們大聲地讀出來(lái)三角形的內角和是1800。

  三、鞏固應用,加深理解

  1、說(shuō)一說(shuō)每個(gè)三角形的內角和是多少度

  師:(出示一個(gè)大三角形)這個(gè)大三角形的內角和是多少度?

  生: 180

  師:(出示一個(gè)小三角形)這個(gè)小三角形的內角和是多少度?

  生:180

  師:(演示)把這兩個(gè)三角形拼在一起,拼成的大三角形的內角和是多少度?

  生:180

  師:為什么每個(gè)三角形的內角和是1800,而合起來(lái)還是180呢?另外那180去哪兒了?

  生:把兩個(gè)三角形拼成一個(gè)大三角形,兩個(gè)直角不再是大三角形的內角,所以少了180

  師:(演示)把一個(gè)大三角形分成兩個(gè)三角形,每個(gè)三角形的內角和是多少度?

  生:180

  2、求下面各角的度數

  師:如果老師告訴你一個(gè)三角形的兩個(gè)角的度數,你能說(shuō)出第三個(gè)角的度數嗎?

 。ǔ觯

  生:三角形內角和是180,在第一個(gè)三角形中,用180-75-28,A=77

  生:用180-90-35,C =55。

  生:第二個(gè)三角形是直角三角形,B是直角,也可以直接用90-35=55。

  生:第三個(gè)三角形中,用180-20-45,B=115。

  3、一個(gè)等腰三角形的風(fēng)箏,它的一個(gè)底角是70,它的頂角是多少度?

  生:等腰三角形的兩個(gè)底角相等,所以用180-70-70 4、

  師:三角形的內角和在我們的生活中應用很廣泛,老師給大家帶來(lái)一個(gè)在建筑中應用的例子。

  在設計這座大橋時(shí),如果設計師將斜拉的鋼索與橋柱形成的夾角設計成了56,建筑師在造橋時(shí)怎樣才能確定鋼索與橋柱是否形成了這個(gè)角度?

  生:用量角器量一量

  師:量哪個(gè)角?量一量斜拉的鋼索與橋柱形成的夾角嗎?

  生:橋面與橋柱形成一個(gè)直角,是90,斜拉的鋼索與橋柱形成的夾角是56,那么用180-90-56=34,就是斜拉的鋼索與橋面的夾角,所以只要讓斜拉的鋼索與橋面的夾角是34,那么斜拉的鋼索與橋柱形成的夾角就是56

  師:你真是個(gè)善于觀(guān)察、善于思考的孩子,努力學(xué)習,將來(lái)一定會(huì )成為一名優(yōu)秀的建筑師。

  四、回顧總結,拓展延伸

  師:40分鐘很快就過(guò)去了,你愿意把自己的收獲與大家共同分享嗎?

  生:我知道了三角形的內角和是180。

  生:無(wú)論是大三角形,還是小三角形,無(wú)論是銳角三角形,還是鈍角三角形,還是銳角三角形,內角和都是180。

  生:把一個(gè)大三角形分成兩個(gè)小三角形,每個(gè)三角形的內角和還是180,把兩個(gè)小三角形拼成一個(gè)大三角形,大三角形的內角和還是180。

  生:我可以用撕、拼、折等方法來(lái)驗證三角形的內角和是180。

  師:這個(gè)同學(xué)不僅學(xué)會(huì )了知識,而且學(xué)會(huì )了方法,我們只有學(xué)會(huì )了方法,才能更好地去探究更多的知識。

  師:那你現在知道為什么一個(gè)三角形內只能有一個(gè)直角或一個(gè)鈍角嗎?

  生:兩個(gè)直角的度數之和是180,再加上一個(gè)角,三個(gè)角的度數之和超過(guò)了180,所以一個(gè)三角形中最多只能有一個(gè)直角。

  生:兩個(gè)鈍角的度數之和就超過(guò)了180,再加上一個(gè)角,就更大了,所以一個(gè)三角形中最多只能有一個(gè)鈍角。

  師:我們學(xué)習知識,必須知其然并知其所以然。

  師:三角形中還有許許多多的學(xué)問(wèn),讓我們在以后的學(xué)習中繼續去研究。

三角形內角和教學(xué)設計4

  教學(xué)內容

  人教版小學(xué)數學(xué)第八冊第五單元第85頁(yè)例5

  任務(wù)分析

  教材分析: 《三角形的內角和》是義務(wù)教育課程標準實(shí)驗教科書(shū)(數學(xué))四年級下冊第五單元《三角形》中的一個(gè)教學(xué)內容。這部分內容是在學(xué)生學(xué)習了角的度量,角的分類(lèi),三角形的認識,三角形的分類(lèi)的基上進(jìn)行教學(xué)的。它是三角形的一個(gè)重要性質(zhì),有助于學(xué)生理解三角形的三個(gè)內角之間的關(guān)系,也是進(jìn)一步學(xué)習的基礎。教材通過(guò)實(shí)際操作,引導學(xué)生用實(shí)驗的方法探索并歸納出這一規律,即任意一個(gè)三角形,它的內角和都是180度。教材在編寫(xiě)上也深刻的體現出了讓學(xué)生探究的特點(diǎn),通過(guò)動(dòng)手操作探究發(fā)現三角形內角和為180度。教學(xué)內容的核心思想體現在讓學(xué)生經(jīng)歷猜想—驗證—結論的過(guò)程,來(lái)認識和體驗三角形內角和的特點(diǎn)。

  學(xué)情分析:通過(guò)前面的學(xué)習,學(xué)生已經(jīng)掌握了三角形的一些基礎知識,會(huì )用工具量角、畫(huà)角,具備了探索三角形內角和的知識與基礎技能。在四年級上冊《角的度量》的學(xué)習中,學(xué)生有接觸到兩把三角尺的內角和是180°;并在相關(guān)的補充習題和數學(xué)練習冊的練習中,也有要求測量任意三角形的三個(gè)內角的度數并求出它們的和的練習,很多學(xué)生已經(jīng)知道了三角形的內角和是180°。但是要真正理解和掌握需要進(jìn)行驗證,因此,學(xué)生在這節課上的主要任務(wù)是通過(guò)實(shí)驗操作驗證三角形的內角和是180°。

  教學(xué)目標

  1、通過(guò)實(shí)驗、操作、推理歸納出三角形內角和是180°。

  2、能運用三角形的內角和是180°這一規律,求三角形未知角的度數并運用解決實(shí)際生活問(wèn)題。

  3、通過(guò)拼擺,感受數學(xué)的轉化思想。

  教學(xué)重點(diǎn)

  探究發(fā)現和驗證“三角形的.內角和180度”。

  教學(xué)難點(diǎn)

  驗證三角形的內角和是180度。

  教學(xué)準備

  多媒體課件,銳角三角形、直角三角形、鈍角三角形,剪刀,量角器等。

  教學(xué)過(guò)程

  一、復習舊知,學(xué)習鋪墊

  1、一個(gè)平角是多少度?等于幾個(gè)直角?

  2、如下圖,已經(jīng)∠ 1=35°,∠2=78°,求∠3是多少度?

  二、探究新知,理解規律

  1、說(shuō)明三角形的三個(gè)內角和

  說(shuō)出手中三角形的類(lèi)型(銳角三角形,直角三角形,鈍角三角形)并說(shuō)出三角形有幾個(gè)角?

  師(指出):三角形的這三個(gè)角叫做三角形的三個(gè)內角,這三個(gè)內角的度數和叫做三角形的內角和。

  板書(shū)課題:“三角形的內角和”。

  揭示課題:今天我們一起來(lái)探究三角形的內角和有什么規律。

  2、探究三角形的內角和規律

  探究1:量一量,算一算

  以小組為單位,用量角器計算出三種三角形的內角和各是多少度?

  生討論匯報,并引導學(xué)生發(fā)現:三角形的內角和接近180°。

  師:三角形的內角和接近180°,那它到底與180° 有怎樣的關(guān)系呢?

  學(xué)生預設:有學(xué)生可能會(huì )說(shuō)出三角形的內角和就是180°,這時(shí)老師可以提問(wèn),為什么就是180°?我們要進(jìn)行驗證,你有什么辦法呢?

  探究2:擺一擺,拼一拼

  引導:我們剛剛每個(gè)三角形都量了三次角,每一次度量都有誤差,所以量出來(lái)的內角和有誤差。能不能換一種方法減少度量的次數,減少誤差呢?

  生可能很難想到,可以提示學(xué)生:把三個(gè)內角拼成一個(gè)角就只要量一次角。讓我們一起動(dòng)手做一做

  如圖:

 。1)

  銳角的三個(gè)內角拼成了一個(gè)平角,引導學(xué)生說(shuō)出:銳角三角形的內角和是180°.

 。2)

  讓學(xué)生小組合作用同樣的方法,發(fā)現:直角三角形的內角和也是180°.

 。3)

  讓學(xué)生獨立用同樣的方法,發(fā)現:鈍角三角形的內角和也是180°.

  引導學(xué)生歸納:三角形的內角和是180°。

  是不是所有的三角形的內角和都是180°呢? (是,因為這三類(lèi)三角形包括了所有三角形。)

  板書(shū):三角形的內角和是180°

  三、鞏固練習,應用規律

  1、在一個(gè)三角形中,∠1=140°,∠3=25°,你能求出∠2的度數嗎?

  學(xué)生獨立完成,并說(shuō)出原因:因為三角形的內角和是180°,也就是∠1+∠2+∠3=180°,借助圖像

  ∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)

  = 180°-140°-25° =180°-(140°+25°)

  =40°-25° =180°-165°

  =15° =15°

  2、一個(gè)等腰三角形的頂角是80°,它的兩個(gè)底角各是多少度?

  學(xué)生分析:因為等腰三角形的兩個(gè)底角相等,又因為三角形的內角和是180°,所以

 。180°-80°)÷2

  =100°÷2

  =50°

  四、拓展練習,深化規律

  1、求出下面各角的度數。

 。1) (2)

  2、判斷

 。1)三角形任意兩個(gè)內角的和大于第三個(gè)角。( )

 。2)銳角三角形任意兩個(gè)內角的和大于直角。( )

 。3)有一個(gè)角是60°的等腰三角形不一定是等邊三角形。( )

  3、下面是兩塊三角形的玻璃打碎后留下的殘片,你知道它們原來(lái)各是什么三角形嗎?

 。 ) ( )

  五、課堂小結,分享提升

  1、談?wù)勥@節課你有什么收獲?

  2、課后思考題

  三角形的內角和是180°,那長(cháng)方形、正方形的內角和呢?(根據三角形的內角和是180°求,參考課本88頁(yè)第12題,完成89頁(yè)16題)

  板書(shū)設計

三角形內角和教學(xué)設計5

  設計思路

  本節課我先引導學(xué)生任意畫(huà)出不同類(lèi)型的三角形,用通過(guò)量一量、算一算,得出三角形的內角和是180°或接近180°(測量誤差),再引導學(xué)生通過(guò)剪拼的方法發(fā)現:各類(lèi)三角形的三個(gè)內角都可以拼成一個(gè)平角。再引導學(xué)生通過(guò)折角的方法也發(fā)現這個(gè)結論,由此獲得三角形的內角和是180°的結論。概念的形成沒(méi)有直接給出結論,而是通過(guò)量、算、拼、折等活動(dòng),讓學(xué)生探索、實(shí)驗、發(fā)現、推理歸納出三角形的內角和是180°。

  最后讓學(xué)生運用結論解決實(shí)際問(wèn)題,練習的安排上,注意練習層次性和趣味性,還設計了開(kāi)放性的練習,由一個(gè)同學(xué)出題,其它同學(xué)回答。先給出三角形兩個(gè)內角的度數,說(shuō)出另外一個(gè)內角,有唯一的答案。給出三角形一個(gè)內角,說(shuō)出其它兩個(gè)內角,答案不唯一,可以得出無(wú)數個(gè)答案。讓學(xué)生在游戲中拓展學(xué)生思維。

  教學(xué)目標

  1、讓學(xué)生親自動(dòng)手,通過(guò)量、剪、拼等活動(dòng)發(fā)現、證實(shí)三角形內角和是180°,并會(huì )應用這一知識解決生活中簡(jiǎn)單的實(shí)際問(wèn)題。

  2、讓學(xué)生在動(dòng)手獲取知識的過(guò)程中,培養學(xué)生的創(chuàng )新意識、探索精神和實(shí)踐能力。并通過(guò)動(dòng)手操作把三角形內角和轉化為平角的探究活動(dòng),向學(xué)生滲透“轉化”數學(xué)思想。

  3、使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動(dòng)學(xué)習數學(xué)的興趣。

  教學(xué)重點(diǎn)

  讓學(xué)生經(jīng)歷“三角形內角和是180°”這一知識的形成、發(fā)展和應用的全過(guò)程。

  教學(xué)準備

  教具:多媒體課件、用彩色卡紙剪的相同的兩個(gè)直角三角形、一個(gè)鈍角三角形、一個(gè)銳角三角形。

  學(xué)具:三角形

  教學(xué)過(guò)程

  一、引入

 。ㄒ唬┱J識三角形的內角及三角形的內角和

  師:我們已經(jīng)學(xué)習了三角形的分類(lèi),誰(shuí)能說(shuō)說(shuō)老師手上的是什么三角形?

  師:今天我們來(lái)學(xué)習新的.知識《三角形內角和》,誰(shuí)能說(shuō)說(shuō)哪些角是三角形的內角?(讓學(xué)生邊說(shuō)邊指出來(lái))

  師:那三角形的內角和又是什么意思?(把三角形三個(gè)內角的度數合起來(lái)就叫三角形的內角和。)

 。ǘ┰O疑,激發(fā)學(xué)生探究新知的心理

  師:請同學(xué)們幫老師畫(huà)一個(gè)三角形,能做到嗎?(激發(fā)學(xué)生主動(dòng)學(xué)習的心理)

  生:能。

  師:請聽(tīng)要求,畫(huà)一個(gè)有兩個(gè)內角是直角的三角形,開(kāi)始。(設置矛盾,使學(xué)生在矛盾中去發(fā)現問(wèn)題、探究問(wèn)題。)

  師:有誰(shuí)畫(huà)出來(lái)啦?

  生1:不能畫(huà)。

  生2:只能畫(huà)兩個(gè)直角。

  生3:……

  師:?jiǎn)?wèn)題出現在哪兒呢?這一定有什么奧秘?想不想知道?那就讓我們一起來(lái)研究吧!

 。ń沂久,巧妙引入新知的探究)

  二、動(dòng)手操作,探究三角形內角和

 。ㄒ唬┎乱徊。

  師:猜一猜三角形的內角和是多少度呢?同桌互相說(shuō)說(shuō)自己的看法。

  生1:180°。

  生2:不一定。

  ……

 。ǘ┎僮、驗證三角形內角和是180°。

  1、量一量三角形的內角

  動(dòng)手量一量自己手中的三角形的內角度數。

  師:所有三角形的內角和究竟是不是180°,你能用什么辦法來(lái)證明,使別人相信呢?

  生:可以先量出每個(gè)內角的度數,再加起來(lái)。

  師:哦,也就是測量計算,是嗎?

  學(xué)生匯報結果。

  師:請匯報自己測量的結果。

  生1:180°。

  生2:175°。

  生3:182°。

  ……

  2、拼一拼三角形的內角

  學(xué)生操作

  師:沒(méi)有得到統一的結果。這個(gè)辦法不能使人很信服,怎么辦?還有其它辦法嗎?

  生1:有。

  生2:用拼合的辦法,就是把三角形的三個(gè)內角放在一起,可以拼成一個(gè)平角。

  師:怎樣才能把三個(gè)內角放在一起呢?(學(xué)生操作)

  生:把它們剪下來(lái)放在一起。

  師:很好。

  匯報驗證結果。

  師:通過(guò)拼合我們得出什么結論?

  生1:銳角三角形的內角拼在一起是一個(gè)平角,所以銳角三角形的內角和是180°。

  生2:直角三角形的內角和也是180°。

  生3:鈍角三角形的內角和還是180°。

  課件演示驗證結果。

  師:請看屏幕,老師也來(lái)驗證一下,是不是跟你們得到的結果一樣?(播放課件)

  師:我們可以得出一個(gè)怎樣的結論?

  生:三角形的內角和是180°。

 。ń處煱鍟(shū):三角形的內角和是180°學(xué)生齊讀一遍。)

  師:為什么用測量計算的方法不能得到統一的結果呢?

  生1:量的不準。

  生2:有的量角器有誤差。

  師:對,這就是測量的誤差。

  3、折一折三角形的內角

  師:除了量、拼的方法,還有沒(méi)有別的方法可以驗證三角形的內角和是180°。

  如果學(xué)生說(shuō)不出來(lái),教師便提示或示范。

  學(xué)生操作

  4、小結:三角形的內角和是180°。

  三、解決疑問(wèn)。

  師:現在誰(shuí)能說(shuō)說(shuō)不能畫(huà)出有兩個(gè)直角的一個(gè)三角形的原因?(讓學(xué)生體驗成功的喜悅)

  生:因為三角形的內角和是180°,在一個(gè)三角形中如果有兩個(gè)直角,它的內角和就大于180°。

  師:在一個(gè)三角形中,有沒(méi)有可能有兩個(gè)鈍角呢?

  生:不可能。

  師:為什么?

  生:因為兩個(gè)銳角和已經(jīng)超過(guò)了180°。

  師:那有沒(méi)有可能有兩個(gè)銳角呢?

  生:有,在一個(gè)三角形中最少有兩個(gè)內角是銳角。

  四、應用三角形的內角和解決問(wèn)題。

  1、下面說(shuō)法是否正確。

  鈍角三角形的內角和一定大于銳角三角形的內角和。()

  在直角三角形中,兩個(gè)銳角的和等于90度。()

  在鈍角三角形中兩個(gè)銳角的和大于90度。()

 、芤粋(gè)三角形中不可能有兩個(gè)鈍角。()

 、萑切沃杏幸粋(gè)銳角是60度,那么這個(gè)三角形一定是個(gè)銳角三角形。()

  2、看圖求出未知角的度數。(知識的直接運用,數學(xué)信息很淺顯)

  3、游戲鞏固。

  由一個(gè)同學(xué)出題,其它同學(xué)回答。

 。1)給出三角形兩個(gè)內角,說(shuō)出另外一個(gè)內角(有唯一的答案)。

 。2)給出三角形一個(gè)內角,說(shuō)出其它兩個(gè)內角(答案不唯一,可以得出無(wú)數個(gè)答案)。

  4、根據所學(xué)的知識算出四邊形、正五邊形、正六邊形的內角和。

  五、全課總結。

  今天你學(xué)到了哪些知識?是怎樣獲取這些知識的?你感覺(jué)學(xué)得怎么樣?

  反思:

  在本節課的學(xué)習活動(dòng)過(guò)程中,先讓學(xué)生進(jìn)行測量、計算,但得不到統一的結果,再引導學(xué)生用把三個(gè)角拼在一起得到一個(gè)平角進(jìn)行驗證。這時(shí),有部分學(xué)生在拼湊的過(guò)程中出現了困難,花費的時(shí)間較長(cháng),在這里用課件再演示一遍正好解決了這個(gè)問(wèn)題。再引導學(xué)生用折三角形的方法也能驗證三角形的內角和是180°。練習設計也具有許多優(yōu)點(diǎn),注意到練習的梯度,并由淺入深,照顧到不同層次學(xué)生的需求,也很有趣味性。在整個(gè)教學(xué)設計中,本著(zhù)“學(xué)貴在思,思源于疑”的思想,不斷創(chuàng )設問(wèn)題情境,讓學(xué)生去實(shí)驗、去發(fā)現新知識的奧妙,從而讓學(xué)生在動(dòng)手操作、積極探索的活動(dòng)中掌握知識,積累數學(xué)活動(dòng)經(jīng)驗,發(fā)展空間觀(guān)念和推理能力。

  但因為是借班上課,對學(xué)生了解不多,學(xué)生前面的內容(三角形的特性和分類(lèi))還沒(méi)學(xué)好,所以有些練習學(xué)生就沒(méi)有預想的那么得心應手,如:知道等腰三角形的頂角求底角的題,學(xué)生掌握比較困難。

三角形內角和教學(xué)設計6

  教學(xué)內容:本節課的教學(xué)內容是義務(wù)教育課程標準實(shí)驗教科書(shū)數學(xué)四年級下冊第五單位的第四課時(shí)《三角形的內角和》,主要內容是:驗證三角形的內角和是180°等。

  教學(xué)內容分析:三角形的內角和是180是三角形的一個(gè)重要性質(zhì),它有助于學(xué)生理解三角形的三個(gè)內角之間的關(guān)系,也是進(jìn)一步學(xué)習的基礎。

  教學(xué)對象分析:作為四年級的學(xué)生已有一定的生活經(jīng)驗,在平時(shí)的生活中已經(jīng)接觸到三角形,在尊重學(xué)生已有的知識的基礎上和利用他們已掌握的學(xué)習方法,教師把課堂教學(xué)組織生動(dòng)、活潑,突出知識性、趣味性和生活性,使學(xué)生能在輕松愉快的氣氛中學(xué)習。

  教學(xué)目標:

  1、知識目標:學(xué)生通過(guò)量、剪、拼、擺等操作學(xué)具活動(dòng),找到新舊知識之間的聯(lián)系,主動(dòng)掌握三角形內角和是180°,并運用所學(xué)知識解決簡(jiǎn)單的實(shí)際問(wèn)題。

  2、能力目標:培養學(xué)生的觀(guān)察、歸納、概括能力和初步的空間想象力。

  3、情感目標:培養學(xué)生的創(chuàng )新意識、探索精神和實(shí)踐能力,在學(xué)生親自動(dòng)手和歸納中,感受到理性的美。

  教學(xué)重點(diǎn):理解并掌握三角形的內角和是180°。

  教學(xué)難點(diǎn):驗證所有三角形的內角之和都是180°。

  教具準備:多媒體課件、各種三角形等。

  學(xué)具準備:三角形、剪刀、量角器等。

  教學(xué)過(guò)程:

  一、出示課題,復習舊知

  1、認識三角形的內角。

 。ǎ保⿵土暼切蔚母拍。

 。ǎ玻┙榻B三角形的“內角”。

  2、理解三角形的內角“和”。

  【設計理念】通過(guò)復習三角形的概念的過(guò)程,不僅可以鞏固學(xué)生的舊知識而且可以為新知識教學(xué)提供知識鋪墊。

  二、動(dòng)手操作,探究新知

  1、通過(guò)預習,認識結論,提出疑問(wèn)

  2、驗證三角形的內角和

 。1)用“量一量、算一算”的方法進(jìn)行驗證

 、賲R報測量結果

 、诋a(chǎn)生疑問(wèn):為什么結果不統一?

 、劢鉀Q疑問(wèn):因為存在測量誤差。

 。2)用“剪一剪、拼一拼”的方法進(jìn)行驗證

 、僦笇Ъ舴。

 、俜謩e拼:銳角三角形、直角三角形、鈍角三角形。

 、垓炞C得出:三角形的內角和是180°。

 。3)用“折一折”的方法進(jìn)行驗證

 、僦笇д鄯。

 、俜謩e折:銳角三角形、直角三角形、鈍角三角形。

 、墼俅悟炞C得出:三角形的內角和是180°。

  3、看書(shū)質(zhì)疑

  【設計理念】此過(guò)程采用直觀(guān)教學(xué)手段。通過(guò)讓學(xué)生動(dòng)手量、拼等直觀(guān)演示操作直接作用于學(xué)生的感官,激活學(xué)生的思維,有助于學(xué)生的認識由具體到抽象的轉化。從而明確三角形的內角和是180°。

  三、實(shí)踐應用,解決問(wèn)題:

  1、在一個(gè)三角形中,∠1=140°,∠3=25°,求∠2的度數。

  2、求出三角形各個(gè)角的度數。(圖略)

  3、爸爸給小紅買(mǎi)了一個(gè)等腰三角形的風(fēng)箏。它的一個(gè)底角是

  70°,它的`頂角是多少度?

  4、根據三角形的內角和是180°,你能求出下面的四邊形和正六邊形的內角和嗎?(圖略)

  5、數學(xué)游戲。

  【設計理念】練習設計的優(yōu)化是優(yōu)化教學(xué)過(guò)程的一個(gè)重要方向,所以在新授后的鞏固練習中注意設計層層遞進(jìn),既有坡度、又注意變式,更有一練一得之妙,從而使學(xué)生牢固掌握新知。

  四、總結全課、延伸知識:

  1、今天你們學(xué)到了哪些知識?是怎樣獲取這些知識的?你感覺(jué)學(xué)得怎樣?

  2、知識延伸:給學(xué)生介紹一種更科學(xué)的驗證方法——轉化。

  【設計理念】課堂總結不僅要關(guān)注學(xué)生學(xué)會(huì )了什么,更要關(guān)注用什么方法學(xué),要有意識的促進(jìn)學(xué)生反思。

  板書(shū)設計: 三角形的內角和是180°

  方法:①量一量 拼角(略)

 、谄匆黄

 、壅垡徽

  【設計理念】此板書(shū)設計我力求簡(jiǎn)明扼要、布局合理、條理分明,體現了簡(jiǎn)潔美和形象美,把知識的重點(diǎn)充分地展現在學(xué)生的眼前,起了畫(huà)龍點(diǎn)睛的作用。

三角形內角和教學(xué)設計7

  【教材內容】:

  北師大版四年級數學(xué)下冊

  【教學(xué)目標】:

  1、探索與發(fā)現三角形的內角和是180°,已知三角形的兩個(gè)角度,會(huì )求出第三個(gè)角度。

  2、培養學(xué)生動(dòng)手操作和合作交流的能力,促進(jìn)掌握學(xué)習數學(xué)的方法。

  3、培養學(xué)生自主學(xué)習、積極探索的好習慣,激發(fā)學(xué)生學(xué)習數學(xué)應用數學(xué)的興趣。

  【教學(xué)重點(diǎn)和難點(diǎn)】:

  重點(diǎn)掌握三角形的內角和是180°,會(huì )應用三角形的內角和解決實(shí)際問(wèn)題;難點(diǎn)是探索性質(zhì)的過(guò)程。

  【教材分析】

  《三角形內角和》屬于空間與圖形的范疇,是在學(xué)生已經(jīng)接觸了三角形的穩定性和三角形的分類(lèi)相關(guān)知識后對三角形的進(jìn)一步研究,探索三個(gè)內角的和。教材中安排了學(xué)生對不同形狀的、大小的三角形進(jìn)行進(jìn)行度量,運用折疊、拼湊等方法發(fā)現三角形的內角和是180°。擴充了學(xué)生認識圖形的一般規律從直觀(guān)感性的認識到具體的性質(zhì)探索,更加深入的培養了學(xué)生的空間觀(guān)念。

  【教學(xué)過(guò)程】

  一、創(chuàng )設情境,激發(fā)興趣。

  出示課件,提出兩個(gè)兩個(gè)疑問(wèn):

  1、兩個(gè)大小不一樣的兩個(gè)三角形的對話(huà)我比你大,所以我的內角和比你大,是這樣的嗎?

  2、三個(gè)形狀不一樣的三角形的爭論。我們的形狀不一樣,所以我們的內角和各不相同,是這樣的嗎?老師發(fā)現它們爭論的焦點(diǎn)是三角形的內角和的問(wèn)題,那什么是三角形的內角?什么又是三角形的內角和呢?

  二、初建模型,實(shí)際驗證自己的猜想

  在第一步的基礎上學(xué)生自然想到要量出三角形每個(gè)角的度數就能夠求出三角形的內角和,從而證明三角形的內角和與三角形的大小和形狀沒(méi)有關(guān)系都接近180度。這時(shí)教師要組織學(xué)生進(jìn)行小組合作,每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形、等腰三角形、等邊三角形)的三個(gè)內角,并計算出它們的總和是多少?把小組的`測量結果和討論結果記錄下來(lái)以便全班進(jìn)行交流。

  三角形的形狀

  三角形每個(gè)內角的度數

  內角和

  銳角三角形

  鈍角三角形

  直角三角形

  等腰三角形

  等邊三角形

  三、再建模型,徹底的得出正確的結論

  因為在上一環(huán)節學(xué)生已經(jīng)得出三角形的內角和大約都是或接近180度。因為我們在測量時(shí)由于測量人不同、測量工具不同可能產(chǎn)生一些誤差。有的同學(xué)難免可能猜想三角形的內角和就是180度呢?我們繼續研究和探索。除了測量外我們是否可以利用我們手中的三角形通過(guò)拼一拼、折一折、畫(huà)一畫(huà)的方法來(lái)證明三角形的內角和都是180度呢?教師放手讓學(xué)生去思考、去動(dòng)手操作,對有困難和有疑問(wèn)的同學(xué)進(jìn)行提示和指導。然后讓學(xué)生到前面演示驗證的方法,教師借助多媒體進(jìn)行演示。

  四、應用新知,鞏固練習

  1、算一算,對于不同形狀的三角形給出其中的兩個(gè)角求第三個(gè)角的度數。(1小題屬于基本練習)

  2、試一試,在直角三角形中已知其中的一個(gè)角求另一個(gè)角的度數

  3、想一想,已知等腰三角形的頂角如何算出它的兩個(gè)底角;已知等腰三角形的一個(gè)底角的度數求三角形的頂角。

  4、說(shuō)一說(shuō),判斷三角形的兩個(gè)銳角的和大于90度;直角三角形的兩個(gè)兩個(gè)銳角的和等90度;等腰三角形沿著(zhù)高對折,每個(gè)三角形的內角和是90度。這些說(shuō)法是否正確?由兩個(gè)三角形拼成一個(gè)大的三角形,大三角形的內角和是360度,對嗎?

  五、拓展與延伸

  通過(guò)三角形的內角和是180度的事實(shí)來(lái)探討四邊形、五邊行的內角和。

三角形內角和教學(xué)設計8

  教學(xué)目標:

  1、教會(huì )學(xué)生主動(dòng)探究新識的方法,學(xué)會(huì )運用轉化遷移數學(xué)思想。

  2、學(xué)生通過(guò)量、剪、拼、擺、分割等驗證三角形內角和方法的比較,主動(dòng)掌握三角形內角和是1800,并運用所學(xué)知識解決簡(jiǎn)單的實(shí)際問(wèn)題,發(fā)展學(xué)生的觀(guān)察、歸納、概括能力和初步的空間想象力。

  教學(xué)重點(diǎn): 理解并掌握三角形的內角和是180°。

  教學(xué)難點(diǎn): 驗證所有三角形的內角之和都是180°。

  教具準備: 多媒體課件。

  學(xué)具準備: 量角器、正方形、剪刀、各類(lèi)三角形(包括直角三角形、銳角三角形、鈍角三角形)

  教學(xué)過(guò)程:

  一、導入

  師:知道今天我們學(xué)習什么內容嗎?我們先來(lái)解讀一下課題,三角形,你手中有么?舉起來(lái)我看看,你拿的什么三角形?你呢?師:三角形按角分類(lèi),可分為直角三角形、鈍角三角形和銳角三角形。

  師:什么是內角?你能把你手中三角形的三個(gè)內角用角1、角2、角3標出來(lái)嗎?

  師:還有一個(gè)關(guān)鍵字“和”,什么是三角形的內角和?

  師:你認為三角形的內角和是多少度?你呢?都知道?是多少度?看來(lái)都知道了,就不用再學(xué)了吧?你還想學(xué)什么?

  師:看來(lái)我們不僅要知道三角形的內角和是180度,還要親自證明一下為什么是180度。這才真了不起呢。能證明嗎?你想怎么證明阿?

  生:量一量的方法。

  師:光量就知道了?還要算一算。

  師:這種方法可行嗎?下面咱就來(lái)試試,請同學(xué)們4人一組,分工合作,先測量?jì)冉,再計算求和。小組長(cháng)把計算的過(guò)程記錄下來(lái)。開(kāi)始吧。

  驗證:量角、求和

  小組匯報

  生一:我們組量的是銳角三角形,三個(gè)角分別是50度、60度、70度,銳角三角形的內角和是180度。

  生二:我們組量的是直角三角形,三個(gè)角分別是90度、35度、55度,直角三角形的內角和是180度。

  生三:我們組量的是鈍角三角形,三個(gè)角分別是120度、40度、20度,鈍角三角形的內角和是180度。

  師:從剛才的交流中,你發(fā)現了什么?

  生:不管是銳角三角形、直角三角形,還是鈍角三角形,內角和都是180度。

  師:下面同學(xué)測量得出180度的請你舉手,有沒(méi)有不是180度的?為什么有不同的答案呢?反思一下。我們在測量的時(shí)候容易出現誤差,得出的結論就難以讓人信服?磥(lái)似乎用量的方法還不能充分證明。(劃問(wèn)號)

  師:還敢接受更大挑戰嗎?把量角器和你的工具都收起來(lái),只借助這張三角形紙片證明出三角形的內角和是180度,你有辦法嗎?或許下面的同學(xué)還有別的方法,下面就請同學(xué)們互相交流交流,動(dòng)手試一試吧!

  師:這種方法怎么樣?(鼓掌)老師感到非常的驚喜,你看他們沒(méi)有破壞三角形,就這樣輕輕的一折,就解決了問(wèn)題,真是很巧妙。

  師:你們小組每個(gè)同學(xué)都動(dòng)腦筋了,謝謝你們。

  師:還有那個(gè)小組用的這種方法?你們也非常的聰明。還有別的方法嗎?

  師:其實(shí)大家能用3種方法證明已經(jīng)很不簡(jiǎn)單了,現在我們就能很自信的說(shuō)三角形的內角和是180度。(擦別的)

  師:其實(shí)對我來(lái)說(shuō)重要的不是知識的結論,讓老師感動(dòng)的是你們那種渴望求知,敢于探索的精神。更讓老師高興的是你們積極思考所得出的創(chuàng )造性的方法,F在我們再來(lái)一塊回顧一下。

  師:這幾種方法都足以說(shuō)明三角形的內角和是180度。(結論)

  師:剛才同學(xué)們發(fā)揮自己的.聰明才智,想了很多方法來(lái)證明。王老師也有一種方法能證明。老師這里有一個(gè)活動(dòng)角,借助課本的一邊就構成了一個(gè)三角形,請你睜大眼睛仔細觀(guān)察,你發(fā)現了什么?

  請你再仔細觀(guān)察,你發(fā)現了什么?其實(shí)兩個(gè)底角減少的度數,正是頂角增大的度數。如果我繼續按下去你覺(jué)得會(huì )怎樣?我們來(lái)看看是不是這樣,三角形呢??jì)蓚(gè)底角呢?剛才三角形的動(dòng)態(tài)過(guò)程是不是也能證明三角形的內角和是180度?

  師:看來(lái)只要大家肯動(dòng)腦筋,面對同一問(wèn)題就會(huì )有不同的解決方法。

  師:現在我們知道了“三角形的內角和是180度”,能不能用這個(gè)知識來(lái)解決一些問(wèn)題?

  生:能。

  二、遷移和應用

 。ㄒ唬c(diǎn)將臺:

  下面哪三個(gè)角是同一個(gè)三角形的內角?

 。1)30 °、60 °、45 °、90 °

 。2)52 °、46 °、54 °、80 °

 。3)45 °、46 °、90 °、45 °

 。ǘ┪視(huì )算

  1、已知∠1,∠2,∠3是三角形的三個(gè)內角。

 。1)∠1=38° ∠2=49°求∠3

 。2)∠2=65° ∠3=73° 求∠1

  2、已知∠1和∠2是直角三角形中的兩個(gè)銳角

 。1)∠1=50°求∠2

 。2)∠2=48°求∠1

  3、已知等腰三角形的一個(gè)底角是70°,它的頂角是多少度?

 。ㄈ。變變變!

 。1)一個(gè)三角形中, ∠1 、∠2、∠3。

 。2)如果把∠3剪掉,變成了幾邊形?它的內角和變成多少度呢?

 。3)如果再把∠2剪掉,剩下圖形的內角和是多少度呢?

  三、全課小結

  師:通過(guò)一節課的探索,你有什么收獲?

  生答(略)

  我的幾點(diǎn)認識:

  結合《三角形的內角和》這節課,我對空間與圖形這一部分內容,簡(jiǎn)單的談一下自己的認識。

  空間與圖形這一部分內容,可以用這幾個(gè)字來(lái)概括:難理解,難受,難掌握。在本節課的教學(xué)中,三角形的內角和概念比較抽象,學(xué)生比較難理解。尤其是讓學(xué)生探究三角形的內角和是180度,對學(xué)生來(lái)說(shuō)更是難上加難。如果光憑在頭腦中想,不動(dòng)手實(shí)踐,對于三角形的內角和,學(xué)生也只能機械記憶是180度。那如何更好的讓學(xué)生掌握和接受呢?針對這些特點(diǎn)我采用了一下幾點(diǎn)做法:

  1、根據學(xué)生的知識特點(diǎn)和生活經(jīng)驗,在原有基礎上創(chuàng )造性的使用教材。

  在教學(xué)本節課的內容時(shí),學(xué)生在自己的日常生活或大部分都已經(jīng)知道三角形的內角和是180。因材在這樣的情況下,我創(chuàng )造性的使用教材。不是讓學(xué)生通過(guò)自己動(dòng)手操作之后才發(fā)現三角形的內角和是180,而是直接把問(wèn)題拋給學(xué)生,你們知道三角形的內角和是多少度嗎?

  你們怎么知道的?能自己證明么?這樣學(xué)生從被動(dòng)學(xué)習者的角色,

  立刻轉入主動(dòng)學(xué)習者的角色之中。這樣既能使學(xué)生很好的掌握知識,又能使學(xué)生激發(fā)興趣,提高積極性。

  2、讓學(xué)生在小組交流中進(jìn)行思維的碰撞,在動(dòng)手操作的實(shí)踐過(guò)程中得到知識情感價(jià)值的升華。

  在探究的過(guò)程中,我們采用了小組合作學(xué)習方式,這樣既能給學(xué)生提供交流的空間,又能在短時(shí)間內有效學(xué)習。學(xué)生先交流方法,商定出可行的辦法和方略,然后合作進(jìn)行實(shí)踐。學(xué)生會(huì )為了一個(gè)問(wèn)題爭的面紅耳赤,在這個(gè)過(guò)程中我們驚喜的看到生在交流和動(dòng)手操作過(guò)程中得到了提高。通過(guò)自己的實(shí)踐證明,學(xué)生發(fā)現三角形的內角和的確是180度。

  總之,在教學(xué)空間與圖形的內容時(shí),一定要讓學(xué)生看到“圖形",讓學(xué)生想象"空間”。

三角形內角和教學(xué)設計9

  教學(xué)要求

  1、通過(guò)動(dòng)手操作,使學(xué)生理解并掌握三角形的內角和是180°的結論。

  2、能運用三角形的內角和是180°這一規律,求三角形中未知角的度數。

  3、培養學(xué)生動(dòng)手動(dòng)腦及分析推理能力。

  教學(xué)重點(diǎn)

  三角形的內角和是180°的規律。

  教學(xué)難點(diǎn)

  使學(xué)生理解三角形的內角和是180°這一規律。

  教學(xué)用具

  每個(gè)學(xué)生準備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。

  教學(xué)過(guò)程:

  一、出示預習提綱

  1、三角形按角的不同可以分成哪幾類(lèi)?

  2、一個(gè)平角是多少度?1個(gè)平角等于幾個(gè)直角?

  3、如圖,已知∠1=35°,∠2=75°,求∠3的度數。

  二、展示匯報交流

  1、投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個(gè)角?老師指出:三角形的這三個(gè)角,就叫做三角形的三個(gè)內角。(板書(shū):內角)

  2、三角形三個(gè)內角的度數和叫做三角形的內角和。(板書(shū)課題:三角形的內角和)今天我們一起來(lái)研究三角形的內角和有什么規律。

  3、以小組為單位先畫(huà)4個(gè)不同類(lèi)型的三角形,利用手中的工具分別計算三角形三個(gè)內角的和各是多少度?

  4、指名學(xué)生匯報各組度量和計算的結果。你有什么發(fā)現?

  5、大家算出的三角形的內角和都接近180°,那么,三角形的內角和與180°究竟是怎樣的關(guān)系呢?就讓我們一起來(lái)動(dòng)手實(shí)驗研究,我們一定能弄清這個(gè)問(wèn)題的。

  6、剛才我們計算三角形的內角和都是先測量每個(gè)角的度數再相加的。在量每個(gè)內角度數時(shí)只要有一點(diǎn)誤差,內角和就有誤差了。我們能不能換一種方法,減少度量的次數呢?

  提示學(xué)生,可以把三個(gè)內角拼成一個(gè)角,就只需測量一次了。

  7、請拿出桌上的'直角三角形紙片,想一想,怎樣折可以把三個(gè)角拼在一起,試一試。

  8、三個(gè)角拼在一起組成了一個(gè)什么角?我們可以得出什么結論?(直角三角形的內角和是180°)

  9、拿一個(gè)銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發(fā)現了什么?(直角三角形和鈍角三角形的內角和也是180°)

  10、那么,我們能不能說(shuō)所有三角形的內角和都是180°呢?為什么?(能,因為這三種三角形就包括了所有三角形)11。老師板書(shū)結論:三角形的內角和是180°。

  12、一個(gè)三角形中如果知道了兩個(gè)內角的度數,你能求出另一個(gè)角是多少度嗎?怎樣求?

  13、出示教材85頁(yè)做一做。讓學(xué)生試做。

  14、指名匯報怎樣列式計算的。兩種方法均可。

  ∠2=180°—140°—25°=15°

  ∠2=180°(140°+25°)=15°

  課后反思:

  對于三角形的內角和,學(xué)生并不陌生,在平時(shí)的做題中已經(jīng)涉及到了?墒菍W(xué)生并不知道如何去驗證,所以本節課,重點(diǎn)讓孩子們經(jīng)歷體驗,感悟圖形。從而收獲了經(jīng)驗。特別是動(dòng)手操作將三角形拼成一個(gè)直角時(shí),有的孩子將角剪得非常小,很不好拼,在此進(jìn)行了重點(diǎn)的提示。

三角形內角和教學(xué)設計10

  教學(xué)目標:

  1、讓學(xué)生通過(guò)量、剪、拼、折等活動(dòng),主動(dòng)探究推導出三角形內角和是180度,并運用所學(xué)知識解決簡(jiǎn)單的實(shí)際問(wèn)題。

  2、讓學(xué)生在動(dòng)手獲取知識的過(guò)程中,培養學(xué)生的創(chuàng )新意識、探索精神和實(shí)踐能力。并通過(guò)動(dòng)手操作把三角形內角和轉化為平角的探究活動(dòng),向學(xué)生滲透"轉化"數學(xué)思想。

  3、在學(xué)生親自動(dòng)手和歸納中,使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動(dòng)學(xué)習數學(xué)的興趣。

  教學(xué)重點(diǎn):

  讓學(xué)生經(jīng)歷"三角形內角和是180°"這一知識的形成、發(fā)展和應用的全過(guò)程。

  教學(xué)難點(diǎn):

  通過(guò)小組內量一量、折一折、撕一撕等活動(dòng),驗證"三角形的內角和是180°。"

  教師準備:

  4組學(xué)具、課件

  學(xué)生準備:

  量角器、練習本

  教學(xué)過(guò)程:

  一、興趣導入,揭示課題

  1、導入:"同學(xué)們,這幾天我們都在研究什么知識?能說(shuō)說(shuō)你們都認識了哪些三角形嗎?它們各有什么特點(diǎn)?"

 。ㄉ鍪救切尾R報各類(lèi)三角形及特點(diǎn))

  2、今天老師也帶來(lái)了兩個(gè)三角形,想不想看看?(播放大屏幕)。"咦,不好,它們怎么吵起來(lái)了?快聽(tīng)聽(tīng)它們?yōu)槭裁闯称饋?lái)了?""哦,它們?yōu)榱巳齻(gè)內角和的大小而吵起來(lái)。"(設置矛盾,使學(xué)生在矛盾中去發(fā)現問(wèn)題、探究問(wèn)題。)

  3、我們來(lái)幫幫它們好嗎?

  4、那么什么叫內角?你們明白嗎?誰(shuí)來(lái)說(shuō)說(shuō)?來(lái)指指。

  你能標出三角形的三個(gè)角嗎?(生快速標好)

  數學(xué)中把三角形的這三個(gè)角稱(chēng)為三角形的內角,三個(gè)內角加起來(lái)就叫內角和。這節課我們就來(lái)研究一下"三角形的內角和"(課件片頭1)

  "同學(xué)們,用什么方法能知道三角形的內角和?"

  二、猜想驗證,探究規律 (動(dòng)手操作,探究新知)

  1.量角求和法證明:

  先聽(tīng)合作要求:拿出準備的一大一小的兩個(gè)三角形,現在我們以小組為單位來(lái)量一量它們的內角,注意分工:最好兩個(gè)人 量,一人記錄,一人計算,看哪一小組完成的好?

 。1)學(xué)生聽(tīng)合作要求后分組合作,將各種三角形的內角和計算出來(lái)并填在小組活動(dòng)記錄表中。(觀(guān)察哪組配合好)。

 。2)指名匯報各組度量和計算內角和的結果。

 。3)觀(guān)察:從大家量、算的結果中,你發(fā)現什么?

  歸納:大家算出的三角形內角和都等于或接近180°。

 。5)思考、討論:

  通過(guò)測量計算,我們發(fā)現三角形的內角和不一定等于180度,因為是測量所以能有誤差,那么還有更好的方法能驗證呢?

  大家討論討論。

  現在各小組就行動(dòng)起來(lái)吧,看哪些小組的方法巧妙?纯茨艿贸鍪裁唇Y論?

  看同學(xué)們拼得這樣開(kāi)心,老師也想拼拼,行嗎?演示課件。

  看老師最終把三個(gè)角拼成了一個(gè)什么角?平角。是多少角?

  "180°是一個(gè)什么角?想一想,怎樣可以把三角形的三個(gè)內角拼在一起?如果拼成一個(gè)180 度的平角就可以驗證這個(gè)結論,對嗎?"(課件3)

  現在,我們可驗證三角形的內角和是(180度)?

  2、那么對任意三角形都是這個(gè)結論?請看大屏幕。

  演示銳角三角形折角。 (三個(gè)頂點(diǎn)重合后是一個(gè)平角,折好后是一個(gè)長(cháng)方形。)

  你們想不想去試一試。

  1、小組探究活動(dòng),師巡視過(guò)程中加入探究、指導(如生有困難,師可引導、有可能出現折不到一起的情況,可演示以幫助學(xué)生)

  2、"你通過(guò)哪種三角形驗證(鈍角、銳角、直角逐一匯報)",生邊出示三角形邊匯報。(如有實(shí)物投影,直接在實(shí)物投影上展示最好,也可用大三角形示范,可隨機改變順序)

  a、驗證直角三角形的內角和

  折法1中三個(gè)角拼在一起組成了一個(gè)什么角?我們可以得出什么結論?

  引導生歸納出:直角三角形的內角和是180°

  折法2 我們還可以得出什么結論?

  引導生歸納出:直角三角形中兩個(gè)銳角的和是90°。

 。矗翰槐厝齻(gè)角都折,銳角向直角方向折,兩個(gè)銳角拼成直角與直角重合即可)

  b、驗證銳角、鈍角三角形的內角和。

  歸納:銳角、鈍角三角形的內角和也是180°。

  放手發(fā)動(dòng)學(xué)生獨立完成 ,逐一種類(lèi)匯報 師給予鼓勵

  三、總結規律

  剛才,我們將直角三角形、銳角三角形、鈍角三角形的三個(gè)內角量、剪、撕,能不能給三角形內角下一個(gè)結論呢?(生:三角形的內角和是180°)對!不論是哪種三角形,不論大!我們可以得出一個(gè)怎樣的結論?

 。ㄈ切蔚膬冉呛褪180°。)

 。ń處煱鍟(shū):三角形的內角和是180°學(xué)生齊讀一遍。)

  為什么用測量計算的.方法不能得到統一的結果呢?

 。康牟粶。有的量角器有誤差。)

  老師的大三角形內角和大小三角形內角和大呀?(一樣大)首尾呼應

  四、應用新知,知識升華。

 。ㄗ寣W(xué)生體驗成功的喜悅)

  現在,我們已經(jīng)知道了三角形的內角和是180°,它又能幫助我們解決那些問(wèn)題呢?

 。ㄕn件5……)

  在一個(gè)三角形中,有沒(méi)有可能有兩個(gè)鈍角呢?

 。ú豢赡。)

  追問(wèn):為什么?

 。ㄒ驗閮蓚(gè)銳角和已經(jīng)超過(guò)了180°。)

  有兩個(gè)直角的一個(gè)三角形

 。ㄒ驗槿切蔚膬冉呛褪180°,在一個(gè)三角形中如果有兩個(gè)直角,它的內角和就大于180°。)

  問(wèn):那有沒(méi)有可能有兩個(gè)銳角呢?

 。ㄓ,在一個(gè)三角形中最少有兩個(gè)內角是銳角。)

  1、 看圖求出未知角的度數。(知識的直接運用,數學(xué)信息很淺顯)

  2、做一做:

  在一個(gè)三角形中,∠1=140度, ∠3=35度,求∠2的度數、

  3、27頁(yè)第3題(數學(xué)信息較為隱藏和生活中的實(shí)際問(wèn)題)

  4.思考題、

  五、總結

  今天,我們在研究三角形的內角和時(shí)經(jīng)歷了猜想、驗證、得出結論的過(guò)程,并且運用這一結論解決了一些問(wèn)題。人們在進(jìn)行科學(xué)研究中,常常都要經(jīng)歷這樣的過(guò)程,同時(shí),它也是一種科學(xué)的研究方法。

  板書(shū)設計:

  三角形內角和

  量一量 拼一拼 折一折

  三角形內角和是180°

三角形內角和教學(xué)設計11

  知識與技能

  1、通過(guò)小組合作,運用直觀(guān)操作的方法,探索并發(fā)現三角形內角和等于180。能應用三角形內角和的性質(zhì)解決一些簡(jiǎn)單問(wèn)題。

  2、經(jīng)歷親自動(dòng)手實(shí)踐、探索三角形內角和的過(guò)程,體會(huì )運用“量一量”、“算一算”、“拼一拼”、“折一折”進(jìn)行驗證的數學(xué)思想方法,提高動(dòng)手操作能力和數學(xué)思考能力。

  情感態(tài)度與價(jià)值觀(guān)

  3、使學(xué)生在數學(xué)活動(dòng)中獲得成功的體驗,感受探索數學(xué)規律的樂(lè )趣。培養學(xué)生的創(chuàng )新意識、探索精神和實(shí)踐能力,在學(xué)生親自動(dòng)手實(shí)踐和歸納中,感受理性的美。

  教學(xué)重點(diǎn):

  1、探索和發(fā)現三角形三個(gè)內角和的度數和等于180o。

  2、已知三角形的兩個(gè)角的度數,會(huì )求出第三個(gè)角的度數。

  教學(xué)難點(diǎn):

  已知三角形的兩個(gè)角的度數,會(huì )求出第三個(gè)角的度數。

  方法與過(guò)程

  教法:主動(dòng)探究法、實(shí)驗操作法。

  學(xué)法:小組合作交流法

  教學(xué)準備:小黑板、學(xué)生、老師準備幾個(gè)形狀不同的三角形、量角器。

  教學(xué)課時(shí):1課時(shí)

  教學(xué)過(guò)程

  一、預習檢查

  說(shuō)一說(shuō)在預習課中操作的感受,應注意哪些問(wèn)題,三角形的內角和等于多少度? 組內交流訂正。

  二、情景導入呈現目標

  故事引入。一天,大三角形對小三角形說(shuō):“我的個(gè)頭大,所以我的內角和一定比你的大!毙∪切魏懿桓市牡卣f(shuō):“是這樣的嗎?”揭示課題,出示目標。產(chǎn)生質(zhì)疑,引入新課。

  三、探究新知 

  自主學(xué)習

  1、活動(dòng)一、比一比2、活動(dòng)二、量一量

 。1)什么是內角?

 。2)如何得到一個(gè)三角形的內角和?

 。3)小組活動(dòng),每組同學(xué)分別畫(huà)出大小,形狀不同的若干個(gè)三角形。分別量出三個(gè)內角的度數,并求出它們的和。

 。4)填寫(xiě)小組活動(dòng)記錄表。發(fā)現大小,形狀不同的每個(gè)三角形,三個(gè)內角的度數和都接近度。

  3、說(shuō)一說(shuō),做一做。

 。1)我們把三個(gè)角撕下來(lái),再拼在一起,看一看會(huì )是怎樣的。

 。2)把三個(gè)角折疊在一起,,三個(gè)角在一條直線(xiàn)上。從而得到三角形三個(gè)內角和等于()度。

  四、當堂訓練(小黑板出示內容)

  1、三角形的內角和是()°,一個(gè)等腰三角形,它的一個(gè)底角是26°,它的頂角是()。

  2、長(cháng)5厘米,8厘米,()厘米的三根小棒不能?chē)梢粋(gè)三角形。

  3、三角形具有()性。

  4、一個(gè)三角形中有一個(gè)角是45°,另一個(gè)角是它的2倍,第三個(gè)角是(),這是一個(gè)()三角形。

  5、按角的大小,三角形可以分為()三角形、()三角形、()三角形。

  6、交流學(xué)案第三題!∠泉毩⒆,最后組內交流。

  五、點(diǎn)撥升華

  任意三角形三個(gè)角的度數和等于180度。獨立思索小組交流總結方法教師點(diǎn)撥。

  六、課堂總結

  通過(guò)這節課的學(xué)習,你有什么新的收獲或者還有什么疑問(wèn)?先小組內說(shuō)一說(shuō),最后班上交流。

  七、拓展提高

  媽媽給淘氣買(mǎi)了一個(gè)等腰三角形的風(fēng)箏。它的頂角是40°,它的一底角是多少? 先獨立做,最后組內交流。

  板書(shū)設計:

  三角形的內角和

  測量三個(gè)角的度數求和:結論:

  教學(xué)反思:三角形內角和等于180°,對于大多數同學(xué)來(lái)說(shuō)并不是新知識。因為在此之前學(xué)生已經(jīng)運用過(guò)這一知識。因此,我覺(jué)得這一堂課的重點(diǎn)不是讓學(xué)生記住這一結論,也不是怎樣運用它去解結問(wèn)題。而是讓學(xué)生證明這一結論,即要讓學(xué)生親歷探索過(guò)程并在探索中驗證。在教學(xué)中,通過(guò)豐富的材料讓學(xué)生動(dòng)手操作,通過(guò)量、撕拼、折拼等實(shí)驗活動(dòng),讓學(xué)生得到的'不僅僅是三角形內角和的知識,更重要的是學(xué)到了怎樣由已知知識探索未知的思維方式與方法,激發(fā)了他們主動(dòng)探索知識的欲望。通過(guò)多種實(shí)驗進(jìn)行操作驗證也讓學(xué)生明白了只要善于思考,善于動(dòng)手就能找到解決問(wèn)題的方法。

  當然,在教學(xué)中也還有一些不順利的地方,比如一些動(dòng)手能力差的學(xué)生未能及時(shí)跟進(jìn),對于方法不對的學(xué)生未能及時(shí)指導和幫助等。但是本堂課采用這樣的方式展開(kāi)教學(xué)是學(xué)生喜歡的也是有成效的。

三角形內角和教學(xué)設計12

  【教學(xué)內容】

  《人教版九年義務(wù)教育教科書(shū) 數學(xué)》四年級下冊《三角形的內角和》

  【教學(xué)目標】

  1.使學(xué)生知道三角形的內角和是180 ,并能運用三角形的內角和是180 解決生活中常見(jiàn)的問(wèn)題。

  2.讓學(xué)生經(jīng)歷量一量、折一折、拼一拼等動(dòng)手操作的過(guò)程。通過(guò)觀(guān)察、 判斷、 交流和推理探索用多種方法證明三角形的內角和是180 。

  3.培養學(xué)生自主學(xué)習、互動(dòng)交流、合作探究的能力和習慣,培養學(xué)習數學(xué)的興趣,感受學(xué)習數學(xué)的樂(lè )趣。

  【教學(xué)重點(diǎn)】

  使學(xué)生知道三角形的內角和是180 ,并能運用它解決生活中常見(jiàn)的問(wèn)題。

  【教學(xué)難點(diǎn)】

  通過(guò)多種方法驗證三角形的內角和是180 。

  【教學(xué)準備】

  課件。四組教學(xué)用三角板。鉛筆。大帆布兜子。固體膠。剪刀?曜尤舾。

  【教學(xué)過(guò)程】

  一、激趣導入,提煉學(xué)習方法

  1.課程開(kāi)始,教師耳朵上別著(zhù)一根鉛筆,肩背大帆布兜子,里面裝著(zhù)一個(gè)量角器和幾把缺了直角的三角板,手拿一張不規則的白紙,以一位老木匠的身份出現在學(xué)生面前。激發(fā)學(xué)生的好奇心。然后自述:“你們好,我是一個(gè)有三十多年工作經(jīng)驗的老木匠了。我收了三個(gè)徒弟,他們已經(jīng)從師學(xué)藝三年了,今天我想讓他們下山掙錢(qián),可又不放心,想出幾道題考驗考驗他們,又不知我的題合不合適,大家想不想先當一會(huì )我的徒弟試試這幾道題呢?”

  2.繼續以老木匠的身份說(shuō):前幾天我造了一架柁,徒弟們能不能用我手中的工具驗證一下橫木和立柱是不是成直角的。

  3.選擇工具,總結方法。

  讓選擇不同工具的同學(xué)用自己的方法驗證。教師隨機板書(shū):量一量、拼一拼、折一折。

  師:你們真是愛(ài)動(dòng)腦筋的好徒弟,那么請聽(tīng)好師傅的第二個(gè)問(wèn)題。

  4.導入新課。

  圖中有很多三角形,不論什么樣的三角形都有三個(gè)角,這三個(gè)角就叫做三角形的內角,徒弟們能不能用學(xué)過(guò)的'方法或者你喜歡的方法求一求三角形三個(gè)內角的和是多少?(板書(shū)課題:三角形的內角和)

  二、動(dòng)手操作,探索交流新知

  1.分組活動(dòng),探索新知

  根據學(xué)生的選擇把學(xué)生分成三組,分別采用量一量、折一折和拼一拼的方法探索新知。

  量一量組同學(xué)發(fā)給以下幾種學(xué)具:

  折一折組同學(xué)發(fā)給上面的三角形一組。

  拼一拼組同學(xué)發(fā)給上面的三角形一組、剪刀一把還有下面這樣的白紙一張。

  在學(xué)生探索的過(guò)程中教師要走近學(xué)生,與他們共同交流探討,在學(xué)生有困難的時(shí)候要適當給予引導。

  2.多方互動(dòng),交流新知

  師:請我的大徒弟(量一量組)的同學(xué)先來(lái)匯報你們的研究成果。

  (1)首先要求學(xué)生說(shuō)一說(shuō)你們小組是怎樣進(jìn)行探究的。

  (2)說(shuō)出你們組的探究結果怎樣。(在此過(guò)程中教師不能急于糾正學(xué)生不正確的結論,因為這是知識的形成過(guò)程。)

  (3)請學(xué)生說(shuō)說(shuō)通過(guò)探究活動(dòng)你們組得出的結論是什么。

  師:大徒弟就是大徒弟,匯報的真不錯。二徒弟(折一折組)你們有沒(méi)有更好的辦法呢?

  引導這一組從探究的過(guò)程和結論與同學(xué)、老師交流。

  師:別看小徒弟(拼一拼組)這么小,方法可能是最好的?靵(lái)把你們的方法給大家匯報匯報。

  同樣引導這一組從探究的過(guò)程和結論與同學(xué)、老師交流。

  3.思想碰撞,夯實(shí)新知

  師:三個(gè)徒弟你們能說(shuō)說(shuō)誰(shuí)的方法最好嗎?

  學(xué)生都會(huì )說(shuō)自己的方法最好,再讓其他同學(xué)發(fā)表自己的意見(jiàn),此時(shí)生生之間,師生之間交流。(教師要引導學(xué)生說(shuō)出量一量的方法可能由于量的不夠準確,所以結果可能比180 大一些,或小一些。而其他兩種方法沒(méi)有改變角的大小,所以他們的是正確的。)

  師:不論你量的怎樣認真都會(huì )有不準確的地方,這就叫誤差。而其他兩組同學(xué)的方法更準確。三角形的內角和就是180 。(板書(shū):三角形的內角和是180 )

  四、走進(jìn)生活,提升運用能力

  1.出示課前那架柁標出它的頂角是120 ,求它的一個(gè)底角是多少度?

  2.給你三根木條,能做出一個(gè)有兩個(gè)直角的三角形嗎?

  五、總結

  師:徒弟們你們經(jīng)過(guò)三年的苦學(xué),終于學(xué)有所成了。今天,能說(shuō)說(shuō)你們在我這里都學(xué)到了什么手藝嗎?

  六、拓展新知,課外延伸

  師:俗話(huà)說(shuō)“活到老,學(xué)到老!蹦銈兿律胶筮要繼續探索,所以我要把我畢生都沒(méi)有完成的任務(wù)交給你們去研究。

  大屏幕出示:

  能用你今天學(xué)過(guò)的知識和方法探索一下四邊形的內角和是多少度嗎?

三角形內角和教學(xué)設計13

  設計思路

  遵循由特殊到一般的規律進(jìn)行探究活動(dòng)是這節課設計的主要特點(diǎn)之一。學(xué)生對三角尺上每個(gè)角的度數比較熟悉,就從這里入手。先讓學(xué)生算出每塊三角尺三個(gè)內角的和是180°,引發(fā)學(xué)生的猜想:其它三角形的內角和也是180°嗎?接著(zhù),引導學(xué)生小組合作,任意畫(huà)出不同類(lèi)型的三角形,用通過(guò)量一量、算一算,得出三角形的內角和是180°或接近180°(測量誤差),再引導學(xué)生通過(guò)剪拼的方法發(fā)現:各類(lèi)三角形的三個(gè)內角都可以拼成一個(gè)平角。再利用課件演示進(jìn)一步驗證,由此獲得三角形的內角和是180°的結論。這一系列活動(dòng)潛移默化地向學(xué)生滲透了“轉化”數學(xué)思想,為后繼學(xué)習奠定了必要的基礎。

  最后讓學(xué)生運用結論解決實(shí)際問(wèn)題,練習的安排上,注意練習層次,共安排三個(gè)層次,逐步加深。練習形式具有趣味性,激發(fā)了學(xué)生主動(dòng)解題的積極性。第一個(gè)練習從知識的直接應用到間接應用,數學(xué)信息的出現從比較顯現到較為隱藏。這些題檢測不同層次的學(xué)生是否掌握所學(xué)知識應該達到的基本要求,顧及到智力水平發(fā)展較慢和中等的同學(xué),第3個(gè)練習設計了開(kāi)放性的練習,在小組內完成。由一個(gè)同學(xué)出題,其它三個(gè)同學(xué)回答。先給出三角形兩個(gè)內角的度數,說(shuō)出另外一個(gè)內角。有唯一的答案。訓練多次后,只給出三角形一個(gè)內角,說(shuō)出其它兩個(gè)內角,答案不唯一,可以得出無(wú)數個(gè)答案。讓學(xué)生在游戲中消除疲倦激發(fā)興趣,拓展學(xué)生思維。兼顧到智力水平發(fā)展較快的同學(xué)。在整個(gè)教學(xué)設計中,本著(zhù)“學(xué)貴在思,思源于疑”的思想,不斷創(chuàng )設問(wèn)題情境,讓學(xué)生去實(shí)驗、去發(fā)現新知識的奧妙,從而讓學(xué)生在動(dòng)手操作、積極探索的活動(dòng)中掌握知識,積累數學(xué)活動(dòng)經(jīng)驗,發(fā)展空間觀(guān)念和推理能力。

  教學(xué)目標

  1、讓學(xué)生親自動(dòng)手,通過(guò)量、剪、拼等活動(dòng)發(fā)現、證實(shí)三角形內角和是180°,并會(huì )應用這一知識解決生活中簡(jiǎn)單的實(shí)際問(wèn)題。

  2、讓學(xué)生在動(dòng)手獲取知識的過(guò)程中,培養學(xué)生的創(chuàng )新意識、探索精神和實(shí)踐能力。并通過(guò)動(dòng)手操作把三角形內角和轉化為平角的探究活動(dòng),向學(xué)生滲透“轉化”數學(xué)思想。

  3、使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動(dòng)學(xué)習數學(xué)的興趣。

  教材分析

  三角形的內角和是三角形的一個(gè)重要特征。本課是安排在學(xué)習三角形的概念及分類(lèi)之后進(jìn)行的,它是學(xué)生以后學(xué)習多邊形的內角和及解決其它實(shí)際問(wèn)題的基礎。學(xué)生在掌握知識方面:已經(jīng)掌握了三角形的分類(lèi),比較熟悉平角等有關(guān)知識;能力方面:經(jīng)過(guò)三年多的學(xué)習,已具備了初步的動(dòng)手操作能力和主動(dòng)探究能力以及合作學(xué)習的習慣。

  因此,教材很重視知識的探索與發(fā)現,安排了一系列的實(shí)驗操作活動(dòng)。教材呈現教學(xué)內容時(shí),不但重視體現知識的形成過(guò)程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒(méi)有直接給出結論,而是通過(guò)量、算、拼等活動(dòng),讓學(xué)生探索、實(shí)驗、發(fā)現、討論交流、推理歸納出三角形的內角和是180°。

  教學(xué)重點(diǎn)

  讓學(xué)生經(jīng)歷“三角形內角和是180°”這一知識的形成、發(fā)展和應用的全過(guò)程。

  教學(xué)準備

  多媒體課件、學(xué)具。

  教學(xué)過(guò)程

  一、激趣引入

 。ㄒ唬┱J識三角形內角

  師:我們已經(jīng)認識了什么是三角形,誰(shuí)能說(shuō)出三角形有什么特點(diǎn)?

  生1:三角形是由三條線(xiàn)段圍成的圖形。

  生2:三角形有三個(gè)角,……

  師:請看屏幕(課件演示三條線(xiàn)段圍成三角形的過(guò)程)。

  師:三條線(xiàn)段圍成三角形后,在三角形內形成了三個(gè)角,(課件分別閃爍三個(gè)角及的'弧線(xiàn)),我們把三角形里面的這三個(gè)角分別叫做三角形的內角。(這里,有必要向學(xué)生直觀(guān)介紹“內角”。)

 。ǘ┰O疑,激發(fā)學(xué)生探究新知的心理

  師:請同學(xué)們幫老師畫(huà)一個(gè)三角形,能做到嗎?(激發(fā)學(xué)生主動(dòng)學(xué)習的心理)

  生:能。

  師:請聽(tīng)要求,畫(huà)一個(gè)有兩個(gè)內角是直角的三角形,開(kāi)始。(設置矛盾,使學(xué)生在矛盾中去發(fā)現問(wèn)題、探究問(wèn)題。)

  師:有誰(shuí)畫(huà)出來(lái)啦?

  生1:不能畫(huà)。

  生2:只能畫(huà)兩個(gè)直角。

  生3:只能畫(huà)長(cháng)方形。

  師(課件演示):是不是畫(huà)成這個(gè)樣子了?哦,只能畫(huà)兩個(gè)直角。

  師:?jiǎn)?wèn)題出現在哪兒呢?這一定有什么奧秘?想不想知道?

  生:想。

  師:那就讓我們一起來(lái)研究吧!

 。ń沂久,巧妙引入新知的探究)

  二、動(dòng)手操作,探究新知

 。ㄒ唬┭芯刻厥馊切蔚膬冉呛

  師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個(gè)角的度數。(課件閃動(dòng)其中的一塊三角板)

  生:90°、60°、30°。(課件演示:由三角板抽象出三角形)

  師:也就是這個(gè)三角形各角的度數。它們的和怎樣?

  生:是180°。

  師:你是怎樣知道的?

  生:90°+60°+30°=180°。

  師:對,把三角形三個(gè)內角的度數合起來(lái)就叫三角形的內角和。

  師:(課件演示另一塊三角板的各角的度數。)這個(gè)呢?它的內角和是多少度呢?

  生:90°+45°+45°=180°。

  師:從剛才兩個(gè)三角形內角和的計算中,你發(fā)現什么?

  生1:這兩個(gè)三角形的內角和都是180°。

  生2:這兩個(gè)三角形都是直角三角形,并且是特殊的三角形。

 。ǘ┭芯恳话闳切蝺冉呛

  1、猜一猜。

  師:猜一猜其它三角形的內角和是多少度呢?同桌互相說(shuō)說(shuō)自己的看法。

  生1:180°。

  生2:不一定。

  ……

  2、操作、驗證一般三角形內角和是180°。

 。1)小組合作、進(jìn)行探究。

  師:所有三角形的內角和究竟是不是180°,你能用什么辦法來(lái)證明,使別人相信呢?

  生:可以先量出每個(gè)內角的度數,再加起來(lái)。

  師:哦,也就是測量計算,是嗎?那就請四人小組共同研究吧!

  師:每個(gè)小組都有不同類(lèi)型的三角形。每種類(lèi)型的三角形都需要驗證,先討論一下,怎樣才能很快完成這個(gè)任務(wù)。(課前每個(gè)小組都發(fā)有銳角三角形、直角三角形、鈍角三角形,指導學(xué)生選擇解決問(wèn)題的策略,進(jìn)行合理分工,提高效率。)

 。2)小組匯報結果。

  師:請各小組匯報探究結果。

  生1:180°。

  生2:175°。

  生3:182°。

  (三)繼續探究

  師:沒(méi)有得到統一的結果。這個(gè)辦法不能使人很信服,怎么辦?還有其它辦法嗎?

  生1:有。

  生2:用拼合的辦法,就是把三角形的三個(gè)內角放在一起,可以拼成一個(gè)平角。

  師:怎樣才能把三個(gè)內角放在一起呢?

  生:把它們剪下來(lái)放在一起。

  1、用拼合的方法驗證。

  師:很好,請用不同的三角形來(lái)驗證。

  師:小組內完成,仍然先分工怎樣才能很快完成任務(wù),開(kāi)始吧。

  2、匯報驗證結果。

  師:先驗證銳角三角形,我們得出什么結論?

  生1:銳角三角形的內角拼在一起是一個(gè)平角,所以銳角三角形的內角和是180°。

  生2:直角三角形的內角和也是180°。

  生3:鈍角三角形的內角和還是180°。

  3、課件演示驗證結果。

  師:請看屏幕,老師也來(lái)驗證一下,是不是跟你們得到的結果一樣?(播放課件)

  師:我們可以得出一個(gè)怎樣的結論?

  生:三角形的內角和是180°。

 。ń處煱鍟(shū):三角形的內角和是180°學(xué)生齊讀一遍。)

  師:為什么用測量計算的方法不能得到統一的結果呢?

  生1:量的不準。

  生2:有的量角器有誤差。

  師:對,這就是測量的誤差。

三角形內角和教學(xué)設計14

  課題

  三角形的內角和

  

  教學(xué)目標

  1.讓學(xué)生親自動(dòng)手,通過(guò)量、剪、拼等活動(dòng)發(fā)現、證實(shí)三角形內角和是180°,并會(huì )應用這一知識解決生活中簡(jiǎn)單的實(shí)際問(wèn)題。

  2.在學(xué)生在動(dòng)手獲取知識的過(guò)程中,培養學(xué)生的實(shí)踐能力,并通過(guò)動(dòng)手操作把三角形內角和轉化為平角的探究活動(dòng),向學(xué)生滲透“轉化”數學(xué)思想。

  3.使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動(dòng)學(xué)習數學(xué)的興趣。

  重點(diǎn)難點(diǎn)

  重點(diǎn):讓學(xué)生經(jīng)歷“三角形內角和是180°”這一知識的形成、發(fā)展和應用過(guò)程。

  難點(diǎn):探索、驗證三角形內角和是180°的過(guò)程。

  過(guò)程

  

  體驗目標

  “學(xué)”與“教”

  創(chuàng )設問(wèn)題情境

  課件出示:兩個(gè)三角板

  遵循由特殊到一般的規律進(jìn)行探究,引發(fā)學(xué)生的猜想后,引導學(xué)生探討所有的三角形的內角和是不是也是180°。

  這是同學(xué)們熟悉的三角尺,請同學(xué)們說(shuō)一說(shuō)這兩個(gè)三角尺的三個(gè)內角分別是多少度?

  生: 45°、90°、45°。

  生: 30°、90°、60°。

  師:仔細觀(guān)察,算一算這兩個(gè)三角形的內角和是多少度?

  生:90°+45°+45°=180°。

  生:90°+60°+30°=180°。

  師:通過(guò)剛才的算一算,我們得到這兩個(gè)三角形的內角和是180°,由此你想到了什么?

  生:直角三角形內角和是180°,銳角三角形、鈍角三角形內角和也是180°。

  師:這只是我們的一種猜想,三角形的內角和是否真的等于180°,還需要我們去驗證。

  構建

  模型

  每個(gè)組準備六個(gè)三角形(銳角三角形2個(gè)、直角三角形2個(gè)、鈍角三角形2個(gè))

  課件

  學(xué)生自己剪的一個(gè)任意三角形

  大膽放手讓學(xué)生通過(guò)有層次的自主操作活動(dòng),幫助學(xué)生結合已有的知識經(jīng)驗,探究驗證三角形內角和的不同方法。

  讓學(xué)生在經(jīng)歷“提出猜想—實(shí)驗驗證—得出結論”中感悟、體驗知識的形成過(guò)程,將“三角形內角和是180°”一點(diǎn)一滴,浸入學(xué)生大腦,融入已有認知結構。

  這一系列活動(dòng)同時(shí)還潛移默化地向學(xué)生滲透了“轉化”的數學(xué)思想,為后繼學(xué)習奠定了必要的基礎。

  師:之前老師為每個(gè)同學(xué)準備了①-⑥六個(gè)三角形,下面請組長(cháng)分發(fā)給每個(gè)三角形,拿到手后,先別著(zhù)急,先想一想你準備用什么方法去驗證三角形內角和?

  學(xué)生動(dòng)手操作驗證

  師:匯報時(shí),請先說(shuō)一說(shuō)是幾號三角形?然后說(shuō)一說(shuō)這個(gè)三角形是什么三角形?

  學(xué)生匯報:

  生1:③號三角形是直角三角形,內角和是180°。

  生2:②號三角形是銳角三角形,內角和是180°。

  生3:⑤號三角形是鈍角三角形,內角和是180°。

  生4:④號三角形是直角三角形,內角和是180°。

  生5:①號三角形是鈍角三角形,內角和是180°。

  生6:⑥號三角形是銳角三角形,內角和是180°。

  師:除了量的方法外,還有其他方法驗證三角形內角和嗎?

  生1:分別剪下三角形三個(gè)角拼成平角,平角是180°,所以推理得出三角形內角和是180°。

  生2:分別撕下三角形三個(gè)角拼成平角,平角是180°,所以推理得出三角形內角和是180°。

  生3:把三角形的三個(gè)角折成平角,平角是180°,所以推理得出三角形內角和是180°。

  這些方法都驗證了:三角形的內角和是180°。

  師:觀(guān)察這些三角形的內角和是多少度?這些三角形的內角和都是180°,這是不是老師故意安排好的呢?

  師:有沒(méi)有人質(zhì)疑,用什么方法驗證?

  生用自己剪的任意三角形再次驗證三角形內角和是否180°。

  生:得出內角和還是180°。

  師:不管是老師提供的三角形,還是你們自己準備的'三角形,通過(guò)我們的算一算、拼一拼、折一折,都得出了三角形的內角和是180°。

  師:我們已經(jīng)學(xué)習了三角形的分類(lèi),三角形可以分成銳角三角形、直角三角形、鈍角三角形。這些三角形的內角和是180°,我們能把它們概括成一句話(huà)嗎?

  生:三角形的內角和是180°。

  師:看來(lái)我們的猜想是正確的。

  師:早在20xx多年前著(zhù)名數學(xué)家歐幾里得就已經(jīng)得到這個(gè)結論,到了初中以后同學(xué)們還會(huì )用更加嚴密的方法證明三角形的內角和是180°。

  解釋

  運用拓展

  課件

  正方形紙

  讓學(xué)生更深的對所學(xué)的新知加以鞏固,從而促使學(xué)生綜合運用知識,解決問(wèn)題的能力。同時(shí)在練習中發(fā)展學(xué)生的觀(guān)察、歸納、概括能力和初步的空間想象力。

  1.∠1=40°,∠2=48°,求∠3有多少度?

  2.算出下面三角形∠3的度數。

 、拧1=42°,∠2=38°,∠3=?

 、啤1=28°,∠2=62°,∠3=?

 、恰1=80°,∠2=56°,∠3=?

  師:你是怎樣算的?這三個(gè)三角形各是什么三角形?

  提問(wèn):在一個(gè)三角形中最多有幾個(gè)鈍角?

  在一個(gè)三角形中最多有幾個(gè)直角?

  3.游戲:將準備的正方形紙對折成一個(gè)三角形?

  師:這個(gè)三角形的內角和是多少度?再對折一次,現在內角和是多少度?如果繼續折下去,越折越小,三角形的內角和會(huì )是多少度?

  說(shuō)明:三角形大小變了,內角和不變。

  4.有兩個(gè)完全一樣的三角尺拼成一個(gè)三角形,這個(gè)三角形的內角和是多少度?

  說(shuō)明:三角形形狀變了,內角和不變。

  5.根據所學(xué)知識,你能想辦法求出下面圖形的內角和嗎?

  板書(shū)

  設計

  三角形內角和

 、偬 鈍角三角形 內角和180°

 、谔 銳角三角形 內角和180°

  三角形內角和是180°

 、厶 直角三角形 內角和180°

 、芴 直角三角形 內角和180°

 、萏 鈍角三角形 內角和180°

 、尢 銳角三角形 內角和180°

  學(xué)具教具準備

  課件三角形紙片量角器正方形紙

三角形內角和教學(xué)設計15

  【設計理念】

  新課標重視讓學(xué)生經(jīng)歷數學(xué)知識的形成過(guò)程,要求教師創(chuàng )設有效的問(wèn)題情境激發(fā)學(xué)生的參與欲望,提供足夠的時(shí)間和空間讓學(xué)生經(jīng)歷觀(guān)察、猜測、驗證、交流反思等過(guò)程,使學(xué)生在動(dòng)手操作、合作交流等活動(dòng)中親身經(jīng)歷知識的形成過(guò)程。這樣,學(xué)生不僅可以掌握知識,而且可以積累探究數學(xué)問(wèn)題的活動(dòng)經(jīng)驗,發(fā)展空間觀(guān)念和推理能力。

  【教材內容】新人教版義務(wù)教育課程標準實(shí)驗教科書(shū)四年級下冊數學(xué)第67頁(yè)例6、“做一做”及練習十六的第1、2、3題。

  【教材分析】

  三角形的內角和是三角形的一個(gè)重要特征。本課是安排在三角形的概念及分類(lèi)之后教學(xué)的,它是學(xué)生以后學(xué)習多邊形的內角和及解決其它實(shí)際問(wèn)題的基礎。教材很重視知識的探索與發(fā)現,安排兩次實(shí)驗操作活動(dòng)。教材呈現教學(xué)內容時(shí),不但重視體現知識的形成過(guò)程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間和時(shí)間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒(méi)有直接給出結論,而是通過(guò)量、拼等活動(dòng),讓學(xué)生探索、實(shí)驗、交流、推理歸納出三角形的內角和是180°。

  【學(xué)情分析】

 。、在學(xué)習本課時(shí),學(xué)生已經(jīng)有了探索三角形內角和的知識基礎:知道直角和平角的度數,會(huì )用量角器度量角的度數;認識長(cháng)方形、正方形,知道他們的四個(gè)角都是直角;認識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經(jīng)知道了等腰三角形和正三角形。

 。、已經(jīng)有一部分學(xué)生知道了三角形內角和是180°,只是知其然而不知所以然。

  【教學(xué)目標】

  1通過(guò)“量、剪、拼”等活動(dòng)發(fā)現、驗證三角形的內角和是180°,并能運用這個(gè)知識解決一些簡(jiǎn)單的問(wèn)題。

  2.在觀(guān)察、猜想、操作、合作、分析交流等具體活動(dòng)中,提高動(dòng)手操作能力,積累基本的數學(xué)活動(dòng)經(jīng)驗,發(fā)展空間觀(guān)念和推理能力。

  3.在參與數學(xué)學(xué)習活動(dòng)的過(guò)程中,獲得成功的體驗,感受數學(xué)探究的嚴謹與樂(lè )趣。

  【教學(xué)重點(diǎn)】

  探索發(fā)現、驗證“三角形內角和是180°”,并運用這個(gè)知識解決實(shí)際問(wèn)題。

  【教學(xué)難點(diǎn)】驗證“三角形的內角和是180°”。

  【教(學(xué))具準備】

  多媒體課件; 銳角三角形、直角三角形、鈍角三角形紙片若干個(gè)各類(lèi)三角形(也包括等邊、等腰)、長(cháng)方形、正方形若干個(gè);每人一個(gè)量角器;一把剪刀;每人一副三角尺。

  【教學(xué)步驟】

  一、復習舊知 引出課題

  1、你已經(jīng)知道有關(guān)三角形的哪些知識?

  2、出示課題:三角形的內角和

  設計意圖:也自然導入新課。

  二、提出問(wèn)題 引發(fā)猜想

  1、提出問(wèn)題:看到這個(gè)課題,你有什么問(wèn)題想問(wèn)的?

  預設:(1)三角形的內角指的是哪些角? (2)三角形的內角和是什么意思?

 。3)三角形的內角一共是多少度?

  2、引發(fā)猜想

  猜一猜:三角形的內角和是多少度?你是怎么猜的?

  設計意圖:提出一個(gè)問(wèn)題比解決一個(gè)問(wèn)題更重要。課始在復習三角形已學(xué)知識后,引導學(xué)生提出有關(guān)三角形的新問(wèn)題,讓學(xué)生學(xué)習自己想研究的內容,無(wú)疑激發(fā)了學(xué)生的'學(xué)習興趣,培養了學(xué)生的問(wèn)題意識。由于學(xué)生在平時(shí)使用三角板時(shí)已經(jīng)若隱若現地有了特殊的直角三角形的內角和是180度這一感覺(jué),因此本環(huán)節,要求學(xué)生猜一猜三角形的內角和是多少,并說(shuō)說(shuō)是怎么猜的,以激發(fā)學(xué)生已有知識經(jīng)驗,并體會(huì )到猜想要合理且有根據,同時(shí)也為推理驗證的引出作必要的鋪墊。

  三、操作驗證 形成結論

  1、交流驗證方法:

 。1)用什么方法證明三角形的內角和是180度呢?

  預設: ①量算法 ②剪拼法 ③折拼法等

 。2)三角形的個(gè)數有無(wú)數個(gè),驗證哪些三角形可以代表所有的三角形?我們的操作過(guò)程怎么分工才會(huì )做到省時(shí)又高效?

  2、動(dòng)手驗證

  3、全班匯報交流

  4、小結:剛才通過(guò)大家的動(dòng)手操作驗證了三角形的內角和是180 °度。但動(dòng)手操作會(huì )存在一定的誤差,我們的結論也可能存在偏差。

  5、方法拓展

  推理驗證:用直角三角形的內角和來(lái)證明其他三角形內角和是180 °的方法。

  6、形成結論:任意三角形的內角和是180 °。

  設計意圖:《標準》指出:“教師應激發(fā)學(xué)生的積極性,向學(xué)生提供充分從事數學(xué)活動(dòng)的機會(huì ),幫助他們在自主探索和合作交流的過(guò)程中真正理解和掌握基本的數學(xué)知識與技能、數學(xué)思想和方法,獲得廣泛的數學(xué)活動(dòng)經(jīng)驗!辈聹y后先獨立思考驗證的方法,再進(jìn)行全班交流,給學(xué)生充分的活動(dòng)時(shí)間和空間,讓學(xué)生動(dòng)手操作,使學(xué)生在量、剪、拼、折等一系列操作活動(dòng)中發(fā)現了三角形內角和是180°這個(gè)結論。在探索活動(dòng)前,交流如何使研究樣本具有代表性和全面性與如何分工做到操作省時(shí)高效這兩個(gè)問(wèn)題,培養學(xué)生嚴謹、科學(xué)正確的研究態(tài)度,讓學(xué)生在活動(dòng)中積累基本的數學(xué)活動(dòng)經(jīng)驗,為后續的學(xué)習提供了經(jīng)驗支撐。

  四、應用結論 解決問(wèn)題

  1、鞏固新知:想一想,算一算。

  2、解決問(wèn)題:等腰三角形風(fēng)箏的頂角是多少度?

  3、辨析訓練,完善結論。

  五、課堂總結,歸納研究方法

  今天這節課你學(xué)到了哪些知識?你是怎樣得到這些知識的?

  六、課后延伸:用今天所學(xué)的方法繼續研究四邊形的內角和。

  七、板書(shū)設計:

  三角形的內角和

  猜測: 三角形的內角和是180°?

  驗證: 量 拼

  結論: 任意三角形的內角和是180°

【三角形內角和教學(xué)設計】相關(guān)文章:

《三角形的內角和》教學(xué)設計09-02

三角形內角和教學(xué)設計11-18

三角形內角和教學(xué)設計02-13

《三角形內角和》教學(xué)設計05-03

《三角形的內角和》教學(xué)設計05-08

三角形內角和教學(xué)設計15篇06-28

三角形內角和教學(xué)設計(精選15篇)03-09

三角形內角和教學(xué)設計14篇06-12

《三角形內角和》教學(xué)設計15篇05-08

99久久精品免费看国产一区二区三区|baoyu135国产精品t|40分钟97精品国产最大网站|久久综合丝袜日本网|欧美videosdesexo肥婆