三角形內角和教學(xué)設計

時(shí)間:2022-06-10 02:22:36 設計 我要投稿

三角形內角和教學(xué)設計

  在教學(xué)工作者開(kāi)展教學(xué)活動(dòng)前,常常要根據教學(xué)需要編寫(xiě)教學(xué)設計,教學(xué)設計一般包括教學(xué)目標、教學(xué)重難點(diǎn)、教學(xué)方法、教學(xué)步驟與時(shí)間分配等環(huán)節。那么應當如何寫(xiě)教學(xué)設計呢?下面是小編收集整理的三角形內角和教學(xué)設計,僅供參考,大家一起來(lái)看看吧。

三角形內角和教學(xué)設計

三角形內角和教學(xué)設計1

  課題

  三角形的內角和

  

  教學(xué)目標

  1.讓學(xué)生親自動(dòng)手,通過(guò)量、剪、拼等活動(dòng)發(fā)現、證實(shí)三角形內角和是180°,并會(huì )應用這一知識解決生活中簡(jiǎn)單的實(shí)際問(wèn)題。

  2.在學(xué)生在動(dòng)手獲取知識的過(guò)程中,培養學(xué)生的實(shí)踐能力,并通過(guò)動(dòng)手操作把三角形內角和轉化為平角的探究活動(dòng),向學(xué)生滲透“轉化”數學(xué)思想。

  3.使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動(dòng)學(xué)習數學(xué)的興趣。

  重點(diǎn)難點(diǎn)

  重點(diǎn):讓學(xué)生經(jīng)歷“三角形內角和是180°”這一知識的形成、發(fā)展和應用過(guò)程。

  難點(diǎn):探索、驗證三角形內角和是180°的過(guò)程。

  過(guò)程

  

  體驗目標

  “學(xué)”與“教”

  創(chuàng )設問(wèn)題情境

  課件出示:兩個(gè)三角板

  遵循由特殊到一般的規律進(jìn)行探究,引發(fā)學(xué)生的猜想后,引導學(xué)生探討所有的三角形的內角和是不是也是180°。

  這是同學(xué)們熟悉的三角尺,請同學(xué)們說(shuō)一說(shuō)這兩個(gè)三角尺的三個(gè)內角分別是多少度?

  生: 45°、90°、45°。

  生: 30°、90°、60°。

  師:仔細觀(guān)察,算一算這兩個(gè)三角形的內角和是多少度?

  生:90°+45°+45°=180°。

  生:90°+60°+30°=180°。

  師:通過(guò)剛才的算一算,我們得到這兩個(gè)三角形的內角和是180°,由此你想到了什么?

  生:直角三角形內角和是180°,銳角三角形、鈍角三角形內角和也是180°。

  師:這只是我們的一種猜想,三角形的內角和是否真的等于180°,還需要我們去驗證。

  構建

  模型

  每個(gè)組準備六個(gè)三角形(銳角三角形2個(gè)、直角三角形2個(gè)、鈍角三角形2個(gè))

  課件

  學(xué)生自己剪的一個(gè)任意三角形

  大膽放手讓學(xué)生通過(guò)有層次的自主操作活動(dòng),幫助學(xué)生結合已有的知識經(jīng)驗,探究驗證三角形內角和的不同方法。

  讓學(xué)生在經(jīng)歷“提出猜想—實(shí)驗驗證—得出結論”中感悟、體驗知識的形成過(guò)程,將“三角形內角和是180°”一點(diǎn)一滴,浸入學(xué)生大腦,融入已有認知結構。

  這一系列活動(dòng)同時(shí)還潛移默化地向學(xué)生滲透了“轉化”的數學(xué)思想,為后繼學(xué)習奠定了必要的基礎。

  師:之前老師為每個(gè)同學(xué)準備了①-⑥六個(gè)三角形,下面請組長(cháng)分發(fā)給每個(gè)三角形,拿到手后,先別著(zhù)急,先想一想你準備用什么方法去驗證三角形內角和?

  學(xué)生動(dòng)手操作驗證

  師:匯報時(shí),請先說(shuō)一說(shuō)是幾號三角形?然后說(shuō)一說(shuō)這個(gè)三角形是什么三角形?

  學(xué)生匯報:

  生1:③號三角形是直角三角形,內角和是180°。

  生2:②號三角形是銳角三角形,內角和是180°。

  生3:⑤號三角形是鈍角三角形,內角和是180°。

  生4:④號三角形是直角三角形,內角和是180°。

  生5:①號三角形是鈍角三角形,內角和是180°。

  生6:⑥號三角形是銳角三角形,內角和是180°。

  師:除了量的方法外,還有其他方法驗證三角形內角和嗎?

  生1:分別剪下三角形三個(gè)角拼成平角,平角是180°,所以推理得出三角形內角和是180°。

  生2:分別撕下三角形三個(gè)角拼成平角,平角是180°,所以推理得出三角形內角和是180°。

  生3:把三角形的三個(gè)角折成平角,平角是180°,所以推理得出三角形內角和是180°。

  這些方法都驗證了:三角形的內角和是180°。

  師:觀(guān)察這些三角形的內角和是多少度?這些三角形的內角和都是180°,這是不是老師故意安排好的呢?

  師:有沒(méi)有人質(zhì)疑,用什么方法驗證?

  生用自己剪的任意三角形再次驗證三角形內角和是否180°。

  生:得出內角和還是180°。

  師:不管是老師提供的三角形,還是你們自己準備的三角形,通過(guò)我們的算一算、拼一拼、折一折,都得出了三角形的內角和是180°。

  師:我們已經(jīng)學(xué)習了三角形的分類(lèi),三角形可以分成銳角三角形、直角三角形、鈍角三角形。這些三角形的內角和是180°,我們能把它們概括成一句話(huà)嗎?

  生:三角形的內角和是180°。

  師:看來(lái)我們的猜想是正確的。

  師:早在20xx多年前著(zhù)名數學(xué)家歐幾里得就已經(jīng)得到這個(gè)結論,到了初中以后同學(xué)們還會(huì )用更加嚴密的.方法證明三角形的內角和是180°。

  解釋

  運用拓展

  課件

  正方形紙

  讓學(xué)生更深的對所學(xué)的新知加以鞏固,從而促使學(xué)生綜合運用知識,解決問(wèn)題的能力。同時(shí)在練習中發(fā)展學(xué)生的觀(guān)察、歸納、概括能力和初步的空間想象力。

  1.∠1=40°,∠2=48°,求∠3有多少度?

  2.算出下面三角形∠3的度數。

 、拧1=42°,∠2=38°,∠3=?

 、啤1=28°,∠2=62°,∠3=?

 、恰1=80°,∠2=56°,∠3=?

  師:你是怎樣算的?這三個(gè)三角形各是什么三角形?

  提問(wèn):在一個(gè)三角形中最多有幾個(gè)鈍角?

  在一個(gè)三角形中最多有幾個(gè)直角?

  3.游戲:將準備的正方形紙對折成一個(gè)三角形?

  師:這個(gè)三角形的內角和是多少度?再對折一次,現在內角和是多少度?如果繼續折下去,越折越小,三角形的內角和會(huì )是多少度?

  說(shuō)明:三角形大小變了,內角和不變。

  4.有兩個(gè)完全一樣的三角尺拼成一個(gè)三角形,這個(gè)三角形的內角和是多少度?

  說(shuō)明:三角形形狀變了,內角和不變。

  5.根據所學(xué)知識,你能想辦法求出下面圖形的內角和嗎?

  板書(shū)

  設計

  三角形內角和

 、偬 鈍角三角形 內角和180°

 、谔 銳角三角形 內角和180°

  三角形內角和是180°

 、厶 直角三角形 內角和180°

 、芴 直角三角形 內角和180°

 、萏 鈍角三角形 內角和180°

 、尢 銳角三角形 內角和180°

  學(xué)具教具準備

  課件三角形紙片量角器正方形紙

三角形內角和教學(xué)設計2

  一、教材分析

 。ㄒ唬┙滩牡牡匚缓妥饔谩度切蔚膬冉恰穬热葸x自人教實(shí)驗版九年義務(wù)教育七年級下冊第七章第二節第一課時(shí)。 “三角形的內角和等于180°”是三角形的一個(gè)重要性質(zhì),它揭示了組成三角形的三個(gè)角的數量關(guān)系,學(xué)好它有助于學(xué)生理解三角形內角之間的關(guān)系,也是進(jìn)一步學(xué)習《多邊形內角和》及其它幾何知識的基礎。此外,“三角形的內角和等于180°”在前兩個(gè)學(xué)段已經(jīng)知道了,但這個(gè)結論在當時(shí)是通過(guò)實(shí)驗得出的,本節要用平行線(xiàn)的性質(zhì)來(lái)說(shuō)明它,說(shuō)理中引入了輔助線(xiàn),這些都為后繼學(xué)習奠定了基礎,三角形的內角和定理也是幾何問(wèn)題代數化的體現。

 。ǘ┙虒W(xué)目標

  基于對教材以上的認識及課程標準的要求,我擬定本節課的教學(xué)目標為:

  1、知識技能:發(fā)現“三角形內角和等于180°”,并能進(jìn)行簡(jiǎn)單應用;體會(huì )方程的思想;尋求解決問(wèn)題的方法,獲得解決問(wèn)題的經(jīng)驗。

  2、數學(xué)思考:通過(guò)拼圖實(shí)踐、合作探索、交流,培養學(xué)生的邏輯推理、大膽猜想、動(dòng)手實(shí)踐等能力。

  3、解決問(wèn)題:會(huì )用三角形內角和解決一些實(shí)際問(wèn)題。

  4、情感、態(tài)度、價(jià)值觀(guān):在良好的師生關(guān)系下,建立輕松的學(xué)習氛圍,使學(xué)生樂(lè )于學(xué)數學(xué),在數學(xué)活動(dòng)中獲得成功的體驗,增強自信心,在合作學(xué)習中增強集體責任感。通過(guò)添置輔助線(xiàn)教學(xué),滲透美的思想和方法教育。

 。ㄈ┲仉y點(diǎn)的確立:

  1、重點(diǎn):“三角形的內角和等于180°”結論的探究與應用。

  2、難點(diǎn):三角形的內角和定理的證明方法(添加輔助線(xiàn))的討論

  二、學(xué)情分析

  處于這個(gè)年齡階段的學(xué)生有能力自己動(dòng)手,他們樂(lè )于嘗試、探索、思考、交流與合作,具有分析、歸納、總結的能力,他們渴望體驗成功感和自豪感。因而老師有必要給學(xué)生充分的自由和空間,同時(shí)注意問(wèn)題的`開(kāi)放性與可擴展性。

  基于以上的情況,我確立了本節課的教法和學(xué)法:

  三、教法、學(xué)法

 。ㄒ唬┙谭

  基于本節課內容的特點(diǎn)和七年級學(xué)生的心理特征,我采用了“問(wèn)題情境—建立模型—解釋、應用與拓展”的模式展開(kāi)教學(xué)。本節課采用多媒體輔助教學(xué),旨在呈現更直觀(guān)的形象,提高學(xué)生的積極性和主動(dòng)性,并提高課堂效率。

 。ǘ⿲W(xué)法

  通過(guò)學(xué)生分組拼圖得出結論,小組分析尋求說(shuō)理思路,從不同角度去分析、解決新問(wèn)題,通過(guò)基礎練習、提高練習和拓展練習發(fā)掘不同層次學(xué)生的不同能力,從而達到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘學(xué)生的創(chuàng )新精神。

  四、教學(xué)過(guò)程

  我是以6個(gè)活動(dòng)的形式展開(kāi)教學(xué)的,活動(dòng)1是為了創(chuàng )設情境引入課題,激發(fā)學(xué)生的學(xué)習興趣,活動(dòng)2是探討三角形內角和定理的證明,證明的思路與方法是本節的難點(diǎn),活動(dòng)3到5是新知識的應用,活動(dòng)6是整節課的小結提高。

  具體過(guò)程如下:活動(dòng)1:首先用多媒體展示情境提出問(wèn)題1,設計意圖是:創(chuàng )設情境,引起學(xué)生注意,調動(dòng)學(xué)生學(xué)習的積極性,激發(fā)學(xué)生的學(xué)習興趣,導入新課。在此基礎上由學(xué)生分組,用事先準備好的三角形拼圖發(fā)現三角形的內角和等于180°。設計意圖是:從豐富的拼圖活動(dòng)中發(fā)展學(xué)生思維的靈活性,創(chuàng )造性,從活動(dòng)中獲得成功的體驗,增強自信心,通過(guò)小組合作培養學(xué)生合作、交流能力。在合作學(xué)習中增強集體責任感。再用多媒體演示兩個(gè)動(dòng)畫(huà)拼圖的過(guò)程。設計意圖:讓學(xué)生更加形象直觀(guān)的理解拼圖實(shí)際上只有兩種,一種是折疊,一種是角的拼合,這為下一環(huán)節說(shuō)理中添加輔助線(xiàn)打好基礎,從而達到突破難點(diǎn)的目的。

  前面通過(guò)動(dòng)手大家都知道了三角形的內角和等于180°這個(gè)結論,那么你們是否能利用我們前面所學(xué)的有關(guān)知識來(lái)說(shuō)明一下道理呢?請看問(wèn)題2,請各小組互相討論一下,討論完后請派一個(gè)代表上來(lái)說(shuō)明你們小組的思路[學(xué)生的說(shuō)理方法可能有四種(板書(shū)添輔助線(xiàn)的四種可能并用多媒體演示證明方法)]設計的目的:通過(guò)添置輔助線(xiàn)教學(xué),滲透美的思想和方法教育,突破本節的難點(diǎn),了解輔助線(xiàn)也為后繼學(xué)習打下基礎。在說(shuō)理過(guò)程中,更加深刻地理解多種拼圖方法。同時(shí)讓學(xué)生上板分析說(shuō)理過(guò)程是為了培養學(xué)生的語(yǔ)言表達能力,邏輯思維能力,多種思路的分析是為了培養學(xué)生的發(fā)散性思維。

  通過(guò)活動(dòng)3中問(wèn)題的解決加深學(xué)生對三角形內角和的理解,初步應用新知識,解決一些簡(jiǎn)單的問(wèn)題,培養學(xué)生運用方程思想解幾何問(wèn)題的能力。

  活動(dòng)4向學(xué)生展示分析問(wèn)題的基本方法,培養學(xué)生思維的廣闊性、數學(xué)語(yǔ)言的表達能力。把問(wèn)題中的條件進(jìn)一步簡(jiǎn)化為學(xué)生用輔助線(xiàn)解決問(wèn)題作好鋪墊。同時(shí)培養學(xué)生建模能力。

  活動(dòng)5通過(guò)兩上實(shí)際問(wèn)題的解決加深學(xué)生對所學(xué)知識的理解、應用。培養學(xué)生建模的思想及能力。

  活動(dòng)6的設計目的發(fā)揮學(xué)生主體意識,培養學(xué)生語(yǔ)言概括能力。

  【教學(xué)設計說(shuō)明】

  1、《數學(xué)課程標準》指出:“本學(xué)段(7~9年級)的數學(xué)應結合具體的數學(xué)內容,采用?問(wèn)題情境——建立模型——解釋、應用與拓展?的模式展開(kāi),讓學(xué)生經(jīng)歷知識的形成與應用的過(guò)程…… ”因此,在本節課的教學(xué)中,我不斷的創(chuàng )造自主探究與合作交流的學(xué)習環(huán)境,讓學(xué)生有充分的時(shí)間和空間去動(dòng)手操作,去觀(guān)察分析,去得出結論,并體驗成功,共享成功、

  2、體現自主學(xué)習、合作交流的新課程理念、無(wú)論是例題還是習題的教學(xué)均采用“嘗試—交流—討論”的方式,充分發(fā)揮學(xué)生的主體性,教師起引導、點(diǎn)撥的作用、

  3、結合評價(jià)表,對學(xué)生的課堂表現進(jìn)行激勵性的評價(jià),一方面有利于調動(dòng)學(xué)生的積極性,另一方面有利于學(xué)生進(jìn)行自我反思。

三角形內角和教學(xué)設計3

  一、教學(xué)目標

  1.知識目標:通過(guò)測量、撕拼(剪拼)、折疊等方法,探索和發(fā)現三角形三個(gè)內角的度數和等于180°這一規律,并能實(shí)際應用。

  2.能力目標:培養學(xué)生主動(dòng)探索、動(dòng)手操作的能力。使學(xué)生養成良好的合作習慣。

  3.情感目標:讓學(xué)生體會(huì )幾何圖形內在的結構美。并充分體會(huì )到學(xué)習數學(xué)的快樂(lè )。

  二、教學(xué)過(guò)程

 。ㄒ唬﹦(chuàng )設情境,導入新課

  1、師:我們已經(jīng)認識了三角形,你知道哪些關(guān)于三角形的知識?

 。▽W(xué)生暢所欲言。)

  2、師:我們在討論三角形知識的時(shí)候,三角形中的三個(gè)好朋友卻吵了起來(lái),想知道是怎么回事嗎?讓我們一起去看看吧!

  師口述:一個(gè)大的直角三角形說(shuō):“我的個(gè)頭大,我的內角和一定比你們大!币粋(gè)鈍角三角形說(shuō):“我有一個(gè)鈍角,我的內角和才是最大的)一個(gè)小的銳角三角形很委屈的樣子說(shuō)“是這樣嗎?”,

  3、到底誰(shuí)說(shuō)的對呢?今天我們就來(lái)研究有關(guān)三角形內角和的知識。(板書(shū)課題:三角形內角和)

 。ǘ┳灾魈骄,發(fā)現規律

  1、認識什么是三角形的內角和。

  師:你知道什么是三角形的內角和嗎?

  通過(guò)學(xué)生討論,得出三角形的內角和就是三角形三個(gè)內角的度數和。

  2、探究三角形內角和的特點(diǎn)。

 、僮寣W(xué)生想一想、說(shuō)一說(shuō)怎樣才能知道三角形的內角和?

  學(xué)生會(huì )想到量一量每個(gè)三角形的內角,再相加的方法來(lái)得到三角形的內角和。(如果學(xué)生想到別的方法,只要合理的,教師就給予肯定,并鼓勵他們對自己想到的方法進(jìn)行)

 、谛〗M合作。

  通過(guò)小組合作后交流,匯報。(教師同時(shí)板書(shū)出幾個(gè)小組匯報的結果)讓學(xué)生們發(fā)現每個(gè)三角形的內角和都在180°左右。

  引導學(xué)生推測出三角形的內角和可能都是180°。

  3、驗證推測。

  讓學(xué)生動(dòng)腦筋想一想,怎樣才能驗證自己的推想是否正確,學(xué)生可能會(huì )想到用折拼或剪拼的方法來(lái)看一看三角形的三個(gè)角和起來(lái)是不是180°,也就是說(shuō)三角形的三個(gè)角能不能拼成一個(gè)平角。

 。ㄐ〗M合作驗證,教師參與其中。)

  4、全班交流,共同發(fā)現規律。

  當學(xué)生匯報用折拼或剪拼的方法的時(shí)候,指名學(xué)生上黑板展示結果。

  學(xué)生交流、師生共同總結出三角形的內角和等于180°。教師同時(shí)板書(shū)(三角形內角和等于180°。)

  5、師談話(huà):三個(gè)三角形討論的問(wèn)題現在能解決了嗎?你現在想對這三個(gè)三角形說(shuō)點(diǎn)什么嗎?(讓學(xué)生暢所欲言,對得出的三角形內角和是180°做系統的整理。)

 。ㄈ╈柟叹毩,拓展應用

  根據發(fā)現的三角形的新知識來(lái)解決問(wèn)題。

  1、完成“試一試”

  讓學(xué)生獨立完成后,集體交流。

  2、游戲:選度數,組三角形。

  請選出三個(gè)角的度數來(lái)組成一個(gè)三角形。

  150°10°15°18°20°32°

  35°50°52°54°56°58°

  130°70°72°75°60°

  學(xué)生回答的同時(shí),教師操作課件,把學(xué)生選擇的度數拖入方框內,通過(guò)電腦計算相加是否等于180°,來(lái)驗證學(xué)生的選擇是否正確。驗證學(xué)生選的對了以后,再讓學(xué)生判斷選擇的度數所組成的三角形按角的大小分類(lèi),屬于哪種三角形。并說(shuō)出理由。

  3、“想想做做”第1題

  生獨立完成,集體訂正,并說(shuō)說(shuō)解題方法。

  4、“想想做做”第2題

  提問(wèn):為什么兩個(gè)三角形拼成一個(gè)三角形后,內角和還是180度?

  5、“想想做做”第3題

  生動(dòng)手折折看,填空。

  提問(wèn):三角形的內角和與三角形的大小有關(guān)系嗎?三角形越大,內角和也越大嗎?

  6、“想想做做”第5題

  生獨立完成,說(shuō)說(shuō)不同的解題方法。

  7、“想想做做”第6題

  學(xué)生說(shuō)說(shuō)自己的想法。

  8、思考題

  教師拿一個(gè)大三角形,提問(wèn)學(xué)生內角和是多少?用剪刀剪成兩個(gè)三角形,提問(wèn)學(xué)生內角和是多少?為什么?再剪下一個(gè)小三角形,提問(wèn)學(xué)生內角和是多少?為什么?最后建成一個(gè)四邊形,提問(wèn)學(xué)生內角和是多少?你能推導

  出四邊形的內角和公式嗎?

 。ㄋ模┱n堂總結

  本節課我們學(xué)習了哪些內容?(生自由說(shuō)),同學(xué)們說(shuō)得真好,我們要勇于從事實(shí)中尋找規律,再將規律運用到實(shí)踐當中去。

  三教后反思:

  “三角形的內角和”是小學(xué)數學(xué)教材第八冊“認識圖形”這一單元中的一個(gè)內容。通過(guò)鉆研教材,研究學(xué)情和學(xué)法,與同組老師交流,我將本課的教學(xué)目標確定為:

  1、通過(guò)測量、撕拼、折疊等方法,探索和發(fā)現三角形三個(gè)內角的度數和等于180度。

  2、已知三角形兩個(gè)角的度數,會(huì )求出第三個(gè)角的度數。

  本節教學(xué)是在學(xué)生在學(xué)習“認識三角形”的基礎上進(jìn)行的,“三角形內角和等于180度”這一結論學(xué)生早知曉,但為什么三角形內角和會(huì )一樣?這也正是本節課要與學(xué)生共同研究的問(wèn)題。所以我將這節課教學(xué)的`重難點(diǎn)設定為:通過(guò)動(dòng)手操作驗證三角形的內角和是180°。教學(xué)方法主要采用了實(shí)驗法和演示法。學(xué)生的折、拼、剪等實(shí)踐活動(dòng),讓學(xué)生找到了自己的驗證方法,使他們體驗了成功,也學(xué)會(huì )了學(xué)習。下面結合自己的教學(xué),談幾點(diǎn)體會(huì )。

 。ㄒ唬﹦(chuàng )設情景,激發(fā)興趣

  俗話(huà)說(shuō):“良好的開(kāi)端是成功的一半”。一堂課的開(kāi)頭雖然只有短短幾分鐘,但它卻往往影響一堂課的成敗。因此,教師必須根據教學(xué)內容和學(xué)生實(shí)際,精心設計每一節課的開(kāi)頭導語(yǔ),用別出心裁的導語(yǔ)來(lái)激發(fā)學(xué)生的學(xué)習興趣,讓學(xué)生主動(dòng)地投入學(xué)習。本節課先創(chuàng )設畫(huà)角質(zhì)疑的情景,當學(xué)生畫(huà)不出來(lái)含有兩個(gè)直角的三角形時(shí),學(xué)生想說(shuō)為什么又不知怎么說(shuō),學(xué)生探究的興趣因此而油然而生。

 。ǘ┙o學(xué)生空間,讓他們自主探究

  “給學(xué)生一些權利,讓他們自己選擇;給學(xué)生一個(gè)條件,讓他們自己去鍛煉;給學(xué)生一些問(wèn)題,讓他們自己去探索;給學(xué)生一片空間,讓他們自己飛翔!蔽矣洸磺暹@是誰(shuí)說(shuō)過(guò)的話(huà),但它給我留下深刻的印象。它正是新課改中學(xué)生主體性的表現,是以人為本新理念的體現。所以在本節課中我注重創(chuàng )設有助于學(xué)生自主探究的機會(huì ),通過(guò)“想辦法驗證三角形內角和是180度”這一核心問(wèn)題,引發(fā)學(xué)生去思考、去探究。我讓他們將課前準備好的三角形拿出來(lái)進(jìn)行研究,學(xué)生通過(guò)折一折、拼一拼、剪一剪等活動(dòng)找到自己的驗證方法。學(xué)生拿著(zhù)他們手中的三角形,在講臺上講述自己的驗證方法,雖然有的方法很不成熟,但也可以看出這個(gè)過(guò)程中,滲透了他們發(fā)現的樂(lè )趣。這樣,學(xué)生在經(jīng)歷“再創(chuàng )造”的過(guò)程中,完成了對新知識的構建和創(chuàng )造。

 。ㄈ┮詫W(xué)定教,注重教學(xué)的有效性

  新課表指出:數學(xué)教學(xué)活動(dòng)必須建立在學(xué)生的認知發(fā)展水平和已有的知識經(jīng)驗基礎之上。要把學(xué)生的個(gè)人知識、直接經(jīng)驗和現實(shí)世界作為數學(xué)教學(xué)的重要資源,即以學(xué)定教,注重每個(gè)教學(xué)環(huán)節的有效性。本課中當我提出“為什么一個(gè)三角形中不能有兩個(gè)角是直角”時(shí),有學(xué)生指出如果有兩個(gè)直角,它就拼不成了一個(gè)三角形;也有學(xué)生說(shuō)如果有兩個(gè)直角,它就趨向于長(cháng)方形或正方形!盀槭裁磿(huì )這樣呢”?學(xué)生沉默片刻后,忽然有個(gè)學(xué)生舉手了:“因為三角形的內角和是180度,兩個(gè)直角已經(jīng)有180度了,所以不可能有兩個(gè)角是直角!边@樣的回答把本來(lái)設計的教學(xué)環(huán)節打亂了,此時(shí)我靈機把問(wèn)題拋給學(xué)生,“你們理解他說(shuō)的話(huà)嗎、你怎么知道內角和是180度、誰(shuí)都知道三角形的內角和是180度”等,當我看到大多數的已經(jīng)知道這一知識時(shí),我就把學(xué)生直接引向主題“想不想自己研究證明一下三角形的內角和是不是180度!奔ぐl(fā)了學(xué)生探究的興趣,使學(xué)生馬上投入到探究之中。

  在練習的時(shí)候,由于形式多樣,所以學(xué)生的興趣非常高漲,效果很好。通過(guò)多邊形內角和的思考以及驗證,發(fā)展了學(xué)生的空間想象力,使課堂的知識得以延伸。<

三角形內角和教學(xué)設計4

  教學(xué)內容:人教版小學(xué)數學(xué)第八冊第85頁(yè)例5及”做一做”

  教學(xué)目標:

  1、讓學(xué)生親自動(dòng)手,通過(guò)量、剪、拼等活動(dòng)發(fā)現、證實(shí)三角形內角和是180°,并會(huì )應用這一知識解決生活中簡(jiǎn)單的實(shí)際問(wèn)題。

  2、讓學(xué)生在動(dòng)手獲取知識的過(guò)程中,培養學(xué)生的創(chuàng )新意識、探索精神和實(shí)踐能力。并通過(guò)動(dòng)手操作把三角形內角和轉化為平角的探究活動(dòng),向學(xué)生滲透“轉化”數學(xué)思想

  3、在探索中體驗發(fā)現的樂(lè )趣,增強學(xué)好數學(xué)的信心、

  教學(xué)重點(diǎn)

  讓學(xué)生經(jīng)歷“三角形內角和是180°”這一知識的形成、發(fā)展和應用的全過(guò)程。

  教學(xué)難點(diǎn) :

  驗證所有三角形的內角之和都是180°

  教具準備:多媒體課件。

  學(xué)具準備:量角器、正方形、剪刀、各類(lèi)三角形(包括直角三角形、銳角三角形、鈍角三角形)

  教學(xué)過(guò)程:

  一、 設疑引思

  1、 分小組分別量出直角三角形、銳角三角形、鈍角三角形的三個(gè)內角的度數、

  2、 每小組請一位同學(xué)說(shuō)出自已量的三角形中兩個(gè)角的度數老師迅速”猜出”第三個(gè)角的.度數、

  3、 設問(wèn):老師為什么能很快”猜” 出第三個(gè)角的度數呢?

  三角形還有許多奧妙,等待我們去探索、<導入新課,板書(shū)課題>

  二、 探索交流,獲取新知

  1、 量一量:每個(gè)學(xué)生將自已剛才量出的三角形的內角和的度數相加,初步得出”三角形的內角和是180°”的結論、

  2、 折一折:將正方形紙沿對角線(xiàn)對折,使之變成兩個(gè)完全重合的三角形,發(fā)現:一個(gè)三角形的內角和就是正方形4個(gè)角內角和的一半,也就是360的一半,即180度, 初步驗證”三角形的內角和是180°”的結論、

  3、 拼一拼:學(xué)生先動(dòng)手剪拼所準備的三角形,進(jìn)一步驗證得出”三角形的內角和是180°”的結論、

  4、 師利用課件演示將一個(gè)三角形的三個(gè)角拼成一個(gè)平角的過(guò)程、

  5、 驗證:FLASH演示三種三角形割補過(guò)程

  發(fā)現1: 通過(guò)把直角三角形割補后,內角∠2,∠3 組成了一個(gè)()角,等于()度,∠1等于90度。所以直角三角形的內角和等于( )度。

  發(fā)現2:通過(guò)把鈍角、銳角三角形割補后,三角組成了一個(gè)( )角,而( )角等于( )度。所以銳角三角形和鈍角三角形的內角和都是180度。

  6、 小結:剛才能過(guò)量一量折一折拼一拼,你發(fā)現了什么?

  生說(shuō),師板書(shū):三角形的內角和———180°

  三、 應用練習,拓展提高

  1、書(shū)例5后”做一做”

  思考:為什么不能畫(huà)出一個(gè)有兩個(gè)直角的三角形?(兩個(gè)鈍角、一個(gè)直角和一個(gè)鈍角的三角形?)

  2、下面哪三個(gè)角會(huì )在同一個(gè)三角形中。

 。1)30、60、45、90

 。2)52、46、54、80

 。3)61、38、44、98

  3、走向生活:

 。1)那天,老師去買(mǎi)了一塊三角形的玻璃,我拿著(zhù)玻璃,剛到校門(mén),一不小心,碰在門(mén)上了,摔成這幾塊(撕),哎,只有再去買(mǎi)一塊,但尺寸我記不得了,該怎么辦,你們能不能幫老師想想辦法?我憑哪塊碎片能再去配一塊和原來(lái)一樣的三角形玻璃嗎?

 。ńY合學(xué)生回答進(jìn)行演示:延長(cháng)兩條邊,交于一點(diǎn),形成原來(lái)的三角形。所以:兩個(gè)角確定了,三角形玻璃形狀和大小也就確定了。)

  四 作業(yè):作業(yè)本

  五 全課總結

  總結:今天這節課我們研究了三角形的內角和,你們學(xué)到了哪些知識,有什么收獲?

  板書(shū)設計:三角形的內角和

  三角形的內角和———180°

三角形內角和教學(xué)設計5

  一、教學(xué)目標:

  1、理解掌握三角形內角和是180°,并運用這一性質(zhì)解決一些簡(jiǎn)單的問(wèn)題。

  2、通過(guò)直觀(guān)操作的方法,引導學(xué)生探索并發(fā)現三角形內角和等于180°,在實(shí)驗活動(dòng)中,體驗探索的過(guò)程和方法。

  3、在探索和發(fā)現三角形內角和的過(guò)程中獲得成功的體驗。

  二、教學(xué)重、難點(diǎn):

  重點(diǎn):探索并發(fā)現三角形內角和等于180°。

  難點(diǎn):運用三角形內角和等于180°的性質(zhì)解決一些實(shí)際問(wèn)題。

  教具:課件、三角形若干。

  學(xué)具:量角器、直角三角形、銳角三角形和鈍角三角形各一個(gè)。

  三、教學(xué)過(guò)程

 。ㄒ唬﹦(chuàng )設情境,導入新課

  我們已經(jīng)學(xué)過(guò)了三角形的知識,我們來(lái)復習一下,看看大屏幕,各是什么三角形?誰(shuí)能說(shuō)說(shuō)什么是銳角三角形、直角三角形、鈍角三角形?追問(wèn):不管是什么三角形它們都有幾個(gè)角呢?這三個(gè)角都叫做三角形的內角,而這三個(gè)內角的和就是這個(gè)三角形的內角和。那么誰(shuí)來(lái)說(shuō)一說(shuō)什么是三角形的內角和?三角形有大有小,形狀也各不相同,那么它們的內角和有沒(méi)有什么特點(diǎn)和規律呢?我們來(lái)看一個(gè)小片段,仔細聽(tīng)它們都說(shuō)了什么?

  教師放課件。

  課件內容說(shuō)明:一個(gè)大的直角三角形說(shuō):“我的個(gè)頭大,我的內角和一定比你們大!币粋(gè)鈍角三角形說(shuō):“我有一個(gè)鈍角,我的內角和才是最大的)一個(gè)小的.銳角三角形很委屈的樣子說(shuō)“是這樣嗎?”

  都聽(tīng)清它們在爭論什么嗎?(它們在爭論誰(shuí)的內角和大。)誰(shuí)能說(shuō)一說(shuō)你的想法?(學(xué)生各抒己見(jiàn),是不評價(jià))果真是這樣嗎?下面我們就來(lái)研究“三角形內角和”。

 。ò鍟(shū)課題:三角形內角和)

 。ǘ┳灾魈骄,發(fā)現規律

  1、探究三角形內角和的特點(diǎn)。

 。1)檢查作業(yè),并提出要求:

  昨天老師讓每位學(xué)生都分別剪出了銳角三角形、直角三角形和鈍角三角形,并量出了每個(gè)角的度數,都完成了嗎?拿出來(lái)吧,一會(huì )我們要算出三角形的內角和填在下面的表格里。我們來(lái)看一下表格以及要求。出示小組活動(dòng)記錄表。

  小組活動(dòng)記錄表

  小組成員的姓名

  三角形的形狀

  每個(gè)內角的度數

  三角形內角的和

 。ㄒ螅禾钔瓯砗,請小組成員仔細觀(guān)察你發(fā)現了什么?)

 、谛〗M合作。

  會(huì )使用表格了嗎?下面我們就以小組為單位,按照要求把結果填在小組長(cháng)手中的表格內。

  各組長(cháng)進(jìn)行匯報。發(fā)現了三角形的內角和都是180°左右。

  師:實(shí)際上,三角形三個(gè)內角和就是180°,只是因為測量有誤差,所以我們才得到剛才得到的數據。

  2、驗證推測。

  那么同學(xué)們有沒(méi)有什么辦法知道三角形的內角和就是180°呢?大家可以討論一下,學(xué)生可能會(huì )想到用折拼或剪拼的方法來(lái)看一看三角形的三個(gè)角和起來(lái)是不是180°,也就是說(shuō)三角形的三個(gè)角能不能拼成一個(gè)平角。師生先演示撕下三個(gè)角拼在一起是否是平角,同學(xué)們在下面操作進(jìn)行體驗,再用課件演示把三個(gè)內角折疊在一起(這時(shí)要注意平行折,把一個(gè)頂點(diǎn)放在邊上)學(xué)生也動(dòng)手試一試。

  通過(guò)我們的驗證我們可以得出三角形的內角和是180°。

  板書(shū):(三角形內角和等于180°。)

  3、師談話(huà):三個(gè)三角形討論的問(wèn)題現在能解決了嗎?你現在想對這三個(gè)三角形說(shuō)點(diǎn)什么嗎?(讓學(xué)生暢所欲言,對得出的三角形內角和是180°做系統的整理。)

  4、同學(xué)們還有什么疑問(wèn)嗎?大家想一想我們知道了三角形內角和是180°可以干什么呢?(知道三角形中兩個(gè)角,可以求出第三個(gè)角)

  出示書(shū)28頁(yè),試一試第3題,并講解。

  說(shuō)明:在直角三角形中一個(gè)銳角等于30°,求另一個(gè)銳角。

  生獨立做,再訂正格式、以及強調不要忘記寫(xiě)度。

  小結:同學(xué)們有沒(méi)有不明白的地方?如果沒(méi)有我們來(lái)做練習。

 。ㄈ╈柟叹毩,拓展應用

  1、出示書(shū)29頁(yè)第一題。說(shuō)明:第一幅圖是銳角三角形已知一個(gè)銳角是75°,另一個(gè)銳角是28°,求第三個(gè)銳角?第二幅圖是直角三角形已知一個(gè)銳角是35°,求另一個(gè)銳角?第三幅圖是鈍角三角形已知一個(gè)銳角是20°,另一個(gè)銳角是45°,求鈍角?

  完成,并填在書(shū)上。講一講直角三角形還有什么解法。

  2、出示29頁(yè)第2題。

  說(shuō)明:一個(gè)鈍角三角形說(shuō):我的兩個(gè)銳角之和大于90°。

  一個(gè)直角三角形說(shuō):我的兩個(gè)銳角之和正好等于90°。讓學(xué)生判斷。

  3、畫(huà)一畫(huà):

  出示四邊形和六邊形。運用三角形內角和是180°計算出各自的內角和。你能推算出多邊形的內角和嗎?

  三角形內角和180度是科學(xué)家帕斯卡12歲時(shí)發(fā)現的。我們同學(xué)還沒(méi)到12歲,看你能不能通過(guò)自己的努力也去探索和發(fā)現。

 。ㄋ模┱n堂總結

  讓學(xué)生說(shuō)說(shuō)在這節課上的收獲!

三角形內角和教學(xué)設計6

  【設計理念】

  新課標重視讓學(xué)生經(jīng)歷數學(xué)知識的形成過(guò)程,要求教師創(chuàng )設有效的問(wèn)題情境激發(fā)學(xué)生的參與欲望,提供足夠的時(shí)間和空間讓學(xué)生經(jīng)歷觀(guān)察、猜測、驗證、交流反思等過(guò)程,使學(xué)生在動(dòng)手操作、合作交流等活動(dòng)中親身經(jīng)歷知識的形成過(guò)程。這樣,學(xué)生不僅可以掌握知識,而且可以積累探究數學(xué)問(wèn)題的活動(dòng)經(jīng)驗,發(fā)展空間觀(guān)念和推理能力。

  【教材內容】新人教版義務(wù)教育課程標準實(shí)驗教科書(shū)四年級下冊數學(xué)第67頁(yè)例6、“做一做”及練習十六的第1、2、3題。

  【教材分析】

  三角形的內角和是三角形的一個(gè)重要特征。本課是安排在三角形的概念及分類(lèi)之后教學(xué)的,它是學(xué)生以后學(xué)習多邊形的內角和及解決其它實(shí)際問(wèn)題的基礎。教材很重視知識的探索與發(fā)現,安排兩次實(shí)驗操作活動(dòng)。教材呈現教學(xué)內容時(shí),不但重視體現知識的形成過(guò)程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間和時(shí)間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒(méi)有直接給出結論,而是通過(guò)量、拼等活動(dòng),讓學(xué)生探索、實(shí)驗、交流、推理歸納出三角形的內角和是180°。

  【學(xué)情分析】

 。、在學(xué)習本課時(shí),學(xué)生已經(jīng)有了探索三角形內角和的知識基礎:知道直角和平角的度數,會(huì )用量角器度量角的度數;認識長(cháng)方形、正方形,知道他們的四個(gè)角都是直角;認識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經(jīng)知道了等腰三角形和正三角形。

 。、已經(jīng)有一部分學(xué)生知道了三角形內角和是180°,只是知其然而不知所以然。

  【教學(xué)目標】

  1通過(guò)“量、剪、拼”等活動(dòng)發(fā)現、驗證三角形的內角和是180°,并能運用這個(gè)知識解決一些簡(jiǎn)單的問(wèn)題。

  2.在觀(guān)察、猜想、操作、合作、分析交流等具體活動(dòng)中,提高動(dòng)手操作能力,積累基本的數學(xué)活動(dòng)經(jīng)驗,發(fā)展空間觀(guān)念和推理能力。

  3.在參與數學(xué)學(xué)習活動(dòng)的過(guò)程中,獲得成功的體驗,感受數學(xué)探究的嚴謹與樂(lè )趣。

  【教學(xué)重點(diǎn)】

  探索發(fā)現、驗證“三角形內角和是180°”,并運用這個(gè)知識解決實(shí)際問(wèn)題。

  【教學(xué)難點(diǎn)】驗證“三角形的內角和是180°”。

  【教(學(xué))具準備】

  多媒體課件; 銳角三角形、直角三角形、鈍角三角形紙片若干個(gè)各類(lèi)三角形(也包括等邊、等腰)、長(cháng)方形、正方形若干個(gè);每人一個(gè)量角器;一把剪刀;每人一副三角尺。

  【教學(xué)步驟】

  一、復習舊知 引出課題

  1、你已經(jīng)知道有關(guān)三角形的哪些知識?

  2、出示課題:三角形的內角和

  設計意圖:也自然導入新課。

  二、提出問(wèn)題 引發(fā)猜想

  1、提出問(wèn)題:看到這個(gè)課題,你有什么問(wèn)題想問(wèn)的?

  預設:(1)三角形的內角指的是哪些角? (2)三角形的內角和是什么意思?

 。3)三角形的內角一共是多少度?

  2、引發(fā)猜想

  猜一猜:三角形的內角和是多少度?你是怎么猜的?

  設計意圖:提出一個(gè)問(wèn)題比解決一個(gè)問(wèn)題更重要。課始在復習三角形已學(xué)知識后,引導學(xué)生提出有關(guān)三角形的新問(wèn)題,讓學(xué)生學(xué)習自己想研究的'內容,無(wú)疑激發(fā)了學(xué)生的學(xué)習興趣,培養了學(xué)生的問(wèn)題意識。由于學(xué)生在平時(shí)使用三角板時(shí)已經(jīng)若隱若現地有了特殊的直角三角形的內角和是180度這一感覺(jué),因此本環(huán)節,要求學(xué)生猜一猜三角形的內角和是多少,并說(shuō)說(shuō)是怎么猜的,以激發(fā)學(xué)生已有知識經(jīng)驗,并體會(huì )到猜想要合理且有根據,同時(shí)也為推理驗證的引出作必要的鋪墊。

  三、操作驗證 形成結論

  1、交流驗證方法:

 。1)用什么方法證明三角形的內角和是180度呢?

  預設: ①量算法 ②剪拼法 ③折拼法等

 。2)三角形的個(gè)數有無(wú)數個(gè),驗證哪些三角形可以代表所有的三角形?我們的操作過(guò)程怎么分工才會(huì )做到省時(shí)又高效?

  2、動(dòng)手驗證

  3、全班匯報交流

  4、小結:剛才通過(guò)大家的動(dòng)手操作驗證了三角形的內角和是180 °度。但動(dòng)手操作會(huì )存在一定的誤差,我們的結論也可能存在偏差。

  5、方法拓展

  推理驗證:用直角三角形的內角和來(lái)證明其他三角形內角和是180 °的方法。

  6、形成結論:任意三角形的內角和是180 °。

  設計意圖:《標準》指出:“教師應激發(fā)學(xué)生的積極性,向學(xué)生提供充分從事數學(xué)活動(dòng)的機會(huì ),幫助他們在自主探索和合作交流的過(guò)程中真正理解和掌握基本的數學(xué)知識與技能、數學(xué)思想和方法,獲得廣泛的數學(xué)活動(dòng)經(jīng)驗!辈聹y后先獨立思考驗證的方法,再進(jìn)行全班交流,給學(xué)生充分的活動(dòng)時(shí)間和空間,讓學(xué)生動(dòng)手操作,使學(xué)生在量、剪、拼、折等一系列操作活動(dòng)中發(fā)現了三角形內角和是180°這個(gè)結論。在探索活動(dòng)前,交流如何使研究樣本具有代表性和全面性與如何分工做到操作省時(shí)高效這兩個(gè)問(wèn)題,培養學(xué)生嚴謹、科學(xué)正確的研究態(tài)度,讓學(xué)生在活動(dòng)中積累基本的數學(xué)活動(dòng)經(jīng)驗,為后續的學(xué)習提供了經(jīng)驗支撐。

  四、應用結論 解決問(wèn)題

  1、鞏固新知:想一想,算一算。

  2、解決問(wèn)題:等腰三角形風(fēng)箏的頂角是多少度?

  3、辨析訓練,完善結論。

  五、課堂總結,歸納研究方法

  今天這節課你學(xué)到了哪些知識?你是怎樣得到這些知識的?

  六、課后延伸:用今天所學(xué)的方法繼續研究四邊形的內角和。

  七、板書(shū)設計:

  三角形的內角和

  猜測: 三角形的內角和是180°?

  驗證: 量 拼

  結論: 任意三角形的內角和是180°

三角形內角和教學(xué)設計7

  【教材分析】

  《三角形內角和》是北師大版《數學(xué)》四年級下冊的內容。是在學(xué)生學(xué)習了三角形的概念及特征之后進(jìn)行的,它是掌握多邊形內角和及其他實(shí)際問(wèn)題的基礎,因此,掌握“三角形的內角和是180度”這一規律具有重要意義。教材首先出示了兩個(gè)三角形比內角和這一情境,讓學(xué)生通過(guò)測量、折疊、拼湊等方法,發(fā)現三角形的內角和是180度。教材還安排了“試一試”,“練一練”的內容。已知三角形兩個(gè)內角的度數,求出第三個(gè)角的度數。

  【學(xué)生分析】

  經(jīng)過(guò)近四年的課改實(shí)驗,孩子們已經(jīng)有了一定的自主探究,合作交流的能力。他們喜歡在實(shí)踐中感悟,在實(shí)踐中發(fā)表自己的見(jiàn)解,對數學(xué)產(chǎn)生了濃厚的興趣。1.知識方面:學(xué)生已經(jīng)掌握了三角形的概念、分類(lèi),熟悉了鈍角、直角、銳角、平角這些角的知識。2.能力方面:已具備了初步的動(dòng)手操作能力和探究能力,并且能夠進(jìn)行簡(jiǎn)單的微機操作。

  【學(xué)習目標】

  知識目標:掌握三角形內角和是180度這一規律,并能實(shí)際應用。

  能力目標: 培養學(xué)生主動(dòng)探索、動(dòng)手操作的能力。培養學(xué)生收集、整理、歸納信息的能力。使學(xué)生養成良好的合作習慣。

  情感目標: 讓學(xué)生體會(huì )幾何圖形內在的結構美。

  【教學(xué)過(guò)程】

  一、 情景激趣,質(zhì)疑猜想。

  播放動(dòng)畫(huà)片:在圖形王國中,有一天三角形大家庭里為“三角形內角和的大小”爆發(fā)了一場(chǎng)激烈的爭吵。

  鈍角三角形大聲叫著(zhù):“我的鈍角大,我的內角和一定比你們的內角和大!变J角三角形也不示弱:“我的銳角雖然比鈍角小,但我的內角和并不比你小!敝苯侨切握f(shuō):“別爭了,三角形的內角和都是180°。我們的內角和是一樣大的!

  師:想一想,什么是三角形的三個(gè)內角的和。

  生:三角形的三個(gè)內角的度數和。

  師:同學(xué)們剛才看了動(dòng)畫(huà)片你們知道誰(shuí)說(shuō)對了嗎?不知道的話(huà)想一想,猜一猜誰(shuí)說(shuō)的對?

  學(xué)生進(jìn)行猜想,自由發(fā)言。

 。ㄔO計意圖:教師借助多媒體技術(shù)創(chuàng )設問(wèn)題情境,架起數學(xué)學(xué)習與現實(shí)生活,抽象數學(xué)與具體問(wèn)題之間的橋梁,激發(fā)了學(xué)生的學(xué)習興趣。鼓勵學(xué)生主動(dòng)質(zhì)疑猜想是培養學(xué)生學(xué)會(huì )學(xué)習的重要途徑。)

  二、自主探究,驗證猜想

  師:剛才大部分同學(xué)都猜直角三角形說(shuō)的對。三角形的三個(gè)內角的和都是 180°,你能設法驗證這個(gè)猜想嗎?

  生1:能。我量出三角形的三個(gè)內角和度數,加起來(lái)是否接近180°(量的時(shí)候可能會(huì )有些誤差)。

  生2:我把三角形的三個(gè)角剪下來(lái)拼一拼是否能拼成一個(gè)平角。

  生3:我把三角形的三個(gè)角撕下來(lái),拼一拼是否180°。

  生4:我把三角形的三個(gè)角往里折,看一看這三個(gè)角是否折成一個(gè)平角。

  ……

  師:上面你們說(shuō)了不少的驗證猜想的方法,請大家用準備好的材料用你喜歡的方法,動(dòng)手驗證自己的猜想吧。▽W(xué)生把三角形的三個(gè)內角分別標上∠1、∠2、∠3,以免在剪拼時(shí)把內角搞混了。)

  學(xué)生邊實(shí)驗邊整理信息,完成實(shí)驗報告單后,學(xué)習小組內進(jìn)行交流討論。

 。ㄔO計意圖:驗證猜想為學(xué)生提供了“做數學(xué)”的機會(huì ),讓每個(gè)學(xué)生圍繞自己的猜想、決定自己的探索方向、選擇自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,讓學(xué)生在操作中自主探究數學(xué)知識的產(chǎn)生發(fā)展過(guò)程。驗證自己的猜想,鼓勵學(xué)生用不同的方法進(jìn)行驗證,促進(jìn)學(xué)生創(chuàng )新能力的發(fā)展。)

  三、交流評價(jià),歸納結論。

  學(xué)生操作驗證,完成實(shí)驗報告單后,利用投影儀展示學(xué)生填寫(xiě)的實(shí)驗報告單。

  實(shí)驗報告單

  實(shí)驗名稱(chēng)

  三角形內角和

  實(shí)驗目的

  探究三角形內角和是多少度。

  實(shí)驗材料

  尺子

  剪刀

  量角器

  銳角三角形紙片

  直角三角形紙片

  鈍角三角形紙片

  我的方法

  我的發(fā)現

  我的表現

  自評

  互評

  學(xué)生在展示過(guò)程中,充分交流和討論實(shí)驗中各自使用的方法和發(fā)現,教師要對學(xué)生的.閃光點(diǎn)及時(shí)進(jìn)行表?yè)P和鼓勵。

  師生共同歸納,得出結論:

  三角形內角和等于180°

 。ㄔO計意圖:各學(xué)習小組匯報自己的驗證過(guò)程,展示探究的成果。對學(xué)生探索發(fā)現的方法、策略進(jìn)行總結歸納,集思廣益,取長(cháng)補短達到共識。在交流、歸納過(guò)程中,及時(shí)肯定其中的閃光點(diǎn)給予表?yè)P和鼓勵,使他們體驗到成功的愉悅,促使他們獲得更大的成功。)

  四、分層練習,鞏固創(chuàng )新。

 、僬n件出示:

  師:這個(gè)三角形是什么三角形?知道幾個(gè)內角的度數?

  生:直角三角形,知道一個(gè)角是30°,還有一個(gè)角是90°!螦=90°-30°=60°。

  師:根據今天所學(xué)的知識,誰(shuí)能求出A的度數?大家自己試一試。

  學(xué)生做完后反饋講評時(shí)讓學(xué)生說(shuō)說(shuō)自己的方法。

  生1:用三角形內角的和(180°)減去30°再減去90°,算出∠A是60°。

  ∠A=180°-30°-90°=60°。

  生2:先用30°加上90°得120°再用180°減去120°也可得∠A =60°。

 、趯W(xué)生完成完成P29的第一題。

  引導學(xué)生按照前面的方法獨立完成,教師巡視,集體訂正。

 、鄄乱徊氯切蔚牧硗鈨蓚(gè)角可能各是多少度。

  同桌同學(xué)互相說(shuō)一說(shuō)。(答案不唯一)

 、苄〗M操作探究活動(dòng)。

  讓學(xué)生剪出幾個(gè)不同的四邊形,按表中所給的方法以做一做,并填一填。

  方 法

  四邊形內角和

  用量角器量出每個(gè)內角的度數,并相加。

  把四邊形四個(gè)角剪下來(lái),拼在一起。

  把四邊形分為兩個(gè)三角形。

  填表后讓學(xué)生想一想、互相說(shuō)一說(shuō),四邊形內角和是多少度?

 。ㄔO計意圖:引導學(xué)生將探究學(xué)習活動(dòng)中所獲得的結論經(jīng)驗和方法運用于探索解決簡(jiǎn)單的實(shí)際問(wèn)題。組織學(xué)生參與具有趣味性、操作性和開(kāi)放性的練習活動(dòng),讓學(xué)生在鞏固練習中培養動(dòng)手能力、實(shí)踐能力和創(chuàng )新思維。)

三角形內角和教學(xué)設計8

  教學(xué)內容:本節課的教學(xué)內容是義務(wù)教育課程標準實(shí)驗教科書(shū)數學(xué)四年級下冊第五單位的第四課時(shí)《三角形的內角和》,主要內容是:驗證三角形的內角和是180°等。

  教學(xué)內容分析:三角形的內角和是180是三角形的一個(gè)重要性質(zhì),它有助于學(xué)生理解三角形的三個(gè)內角之間的關(guān)系,也是進(jìn)一步學(xué)習的基礎。

  教學(xué)對象分析:作為四年級的學(xué)生已有一定的生活經(jīng)驗,在平時(shí)的生活中已經(jīng)接觸到三角形,在尊重學(xué)生已有的知識的基礎上和利用他們已掌握的學(xué)習方法,教師把課堂教學(xué)組織生動(dòng)、活潑,突出知識性、趣味性和生活性,使學(xué)生能在輕松愉快的氣氛中學(xué)習。

  教學(xué)目標:

  1、知識目標:學(xué)生通過(guò)量、剪、拼、擺等操作學(xué)具活動(dòng),找到新舊知識之間的聯(lián)系,主動(dòng)掌握三角形內角和是180°,并運用所學(xué)知識解決簡(jiǎn)單的實(shí)際問(wèn)題。

  2、能力目標:培養學(xué)生的觀(guān)察、歸納、概括能力和初步的空間想象力。

  3、情感目標:培養學(xué)生的創(chuàng )新意識、探索精神和實(shí)踐能力,在學(xué)生親自動(dòng)手和歸納中,感受到理性的美。

  教學(xué)重點(diǎn):理解并掌握三角形的內角和是180°。

  教學(xué)難點(diǎn):驗證所有三角形的內角之和都是180°。

  教具準備:多媒體課件、各種三角形等。

  學(xué)具準備:三角形、剪刀、量角器等。

  教學(xué)過(guò)程:

  一、出示課題,復習舊知

  1、認識三角形的內角。

 。ǎ保⿵土暼切蔚母拍。

 。ǎ玻┙榻B三角形的“內角”。

  2、理解三角形的內角“和”。

  【設計理念】通過(guò)復習三角形的概念的過(guò)程,不僅可以鞏固學(xué)生的舊知識而且可以為新知識教學(xué)提供知識鋪墊。

  二、動(dòng)手操作,探究新知

  1、通過(guò)預習,認識結論,提出疑問(wèn)

  2、驗證三角形的內角和

 。1)用“量一量、算一算”的方法進(jìn)行驗證

 、賲R報測量結果

 、诋a(chǎn)生疑問(wèn):為什么結果不統一?

 、劢鉀Q疑問(wèn):因為存在測量誤差。

 。2)用“剪一剪、拼一拼”的方法進(jìn)行驗證

 、僦笇Ъ舴。

 、俜謩e拼:銳角三角形、直角三角形、鈍角三角形。

 、垓炞C得出:三角形的內角和是180°。

 。3)用“折一折”的方法進(jìn)行驗證

 、僦笇д鄯。

 、俜謩e折:銳角三角形、直角三角形、鈍角三角形。

 、墼俅悟炞C得出:三角形的'內角和是180°。

  3、看書(shū)質(zhì)疑

  【設計理念】此過(guò)程采用直觀(guān)教學(xué)手段。通過(guò)讓學(xué)生動(dòng)手量、拼等直觀(guān)演示操作直接作用于學(xué)生的感官,激活學(xué)生的思維,有助于學(xué)生的認識由具體到抽象的轉化。從而明確三角形的內角和是180°。

  三、實(shí)踐應用,解決問(wèn)題:

  1、在一個(gè)三角形中,∠1=140°,∠3=25°,求∠2的度數。

  2、求出三角形各個(gè)角的度數。(圖略)

  3、爸爸給小紅買(mǎi)了一個(gè)等腰三角形的風(fēng)箏。它的一個(gè)底角是

  70°,它的頂角是多少度?

  4、根據三角形的內角和是180°,你能求出下面的四邊形和正六邊形的內角和嗎?(圖略)

  5、數學(xué)游戲。

  【設計理念】練習設計的優(yōu)化是優(yōu)化教學(xué)過(guò)程的一個(gè)重要方向,所以在新授后的鞏固練習中注意設計層層遞進(jìn),既有坡度、又注意變式,更有一練一得之妙,從而使學(xué)生牢固掌握新知。

  四、總結全課、延伸知識:

  1、今天你們學(xué)到了哪些知識?是怎樣獲取這些知識的?你感覺(jué)學(xué)得怎樣?

  2、知識延伸:給學(xué)生介紹一種更科學(xué)的驗證方法——轉化。

  【設計理念】課堂總結不僅要關(guān)注學(xué)生學(xué)會(huì )了什么,更要關(guān)注用什么方法學(xué),要有意識的促進(jìn)學(xué)生反思。

  板書(shū)設計: 三角形的內角和是180°

  方法:①量一量 拼角(略)

 、谄匆黄

 、壅垡徽

  【設計理念】此板書(shū)設計我力求簡(jiǎn)明扼要、布局合理、條理分明,體現了簡(jiǎn)潔美和形象美,把知識的重點(diǎn)充分地展現在學(xué)生的眼前,起了畫(huà)龍點(diǎn)睛的作用。

三角形內角和教學(xué)設計9

  教學(xué)內容:

  教材第67頁(yè)例6、“做一做”及教材第69頁(yè)練習十六第1~3題。

  教學(xué)目標:

  1.通過(guò)動(dòng)手操作,使學(xué)生理解并掌握三角形的內角和是180°的結論。

  2.能運用三角形的內角和是180°這一結論,求三角形中未知角的度數。

  3.培養學(xué)生動(dòng)手動(dòng)腦及分析推理能力。

  重點(diǎn)難點(diǎn):

  掌握三角形的內角和是180°。

  教學(xué)準備:

  三角形卡片、量角器、直尺。

  導學(xué)過(guò)程

  一、復習

  1、什么是平角?平角是多少度?

  2、計算角的度數。

  3、回憶三角形的相關(guān)知識。(出示直角三角形、銳角三角形、鈍角三角形)

  二、新知

 。ㄔO計意圖:讓學(xué)生經(jīng)歷質(zhì)疑驗證結論這樣的思維過(guò)程,真正整體感知三角形內角和的知識,真正驗證了“實(shí)踐出真知” 的道理,這樣的教學(xué),將三角形內角和置于平面圖形內角和的大背景中,拓展了三角形內角和的數學(xué)知識背景,滲透數學(xué)知識之間的聯(lián)系,有效地避免了新知識的“橫空出現”。同時(shí),培養學(xué)生的綜合素養)

  1、讀學(xué)卡的學(xué)習目標、任務(wù)目標,做到心里有數。

  2、揭題:課件演示什么是三角形的內角和。

  3、猜想:三角形的內角和是多少度。

  4、驗證:

 。1)初證:用一副三角板說(shuō)明直角三角形的內角和是180°。

 。2)質(zhì)疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

 。3)再證:請按學(xué)卡提示,拿出學(xué)具,選擇自己喜歡的方式驗證三角形的內角和 是180°(師巡視)

 。4)匯報結論(清楚明白的給小組加優(yōu)秀10分)

  5、結論:修改板書(shū),把“?”去掉,寫(xiě)“是”。

  6、追問(wèn):把兩塊三角板拼在一起,拼成的大三角形的內角和是多少?說(shuō)明三角形無(wú)論大小它的內角和都是180°(課件演示)

  7、看微課感知“偉大的發(fā)現”(設計意圖:讓學(xué)生感受自己所做的和帕斯卡發(fā)現三角形內角和是180°的過(guò)程是一樣的,從而培養孩子的自信心和創(chuàng )造力。)

  三、知識運用(課件出示練習題,生解答)

  1、填空

 。1)一個(gè)三角形,它的兩個(gè)內角度數之和是110 ,第三個(gè)內角是( ).

 。2)一個(gè)直角三角形的一個(gè)銳角是50,則另一個(gè)銳角是( )。

 。3)等邊三角形的3個(gè)內角都是( )。

 。4)一個(gè)等腰三角形,它的一個(gè)底角是50,那么它的頂角是( )。

 。5)一個(gè)等腰三角形的頂角是60,這個(gè)三角形也是( )三角形。

  2、判斷

 。1)一個(gè)三角形中最多有兩個(gè)直角。 ( )

 。2)銳角三角形任意兩個(gè)內角的和大于90。 ( )

 。3)有一個(gè)角是60的等腰三角形不一定是等邊三角形。 ( )

 。4)三角形任意兩個(gè)內角的和都大于第三個(gè)內角。 ( )

 。5)直角三角形中的兩個(gè)銳角的和等于90。 ( )

  四、拓展探究

  根據所學(xué)的知識,你能想辦法求出四邊形、五邊形的內角和嗎?

  1、小組討論。2、匯報結果。3、課件提示幫助理解。

  五、自我評價(jià)根據學(xué)卡要求給自己評出“優(yōu)”“良好”“合格”。

  六、談?wù)勛约罕竟澱n的收獲。

  教學(xué)反思

  今天我講了《三角形內角和》這部分內容,學(xué)生其實(shí)通過(guò)不同途徑已經(jīng)知道三角形內角和是180°,是不是說(shuō)這節課的重難點(diǎn)就已經(jīng)突破了,只要學(xué)生能應用知識解決問(wèn)題就算是達到這節課的教學(xué)目標了呢?我想應該好好思考教材背后要傳遞的東西。

  任何規律的發(fā)現都要經(jīng)過(guò)一個(gè)猜測、驗證的過(guò)程,不經(jīng)歷這個(gè)探究的過(guò)程,學(xué)生對于這一內容的認識就不深刻,聰明的孩子還會(huì )懷疑三角形內角和是180°嗎?。因此這個(gè)結論必須由實(shí)踐操作得出結論。所以最終我把本課定為一個(gè)實(shí)踐探究課。

  如何開(kāi)篇點(diǎn)題,是我這次要解決的第一個(gè)問(wèn)題。怎樣才能讓學(xué)生由已知順利轉向對未知的探求,怎樣直接轉向研究三個(gè)角的“和”的問(wèn)題呢?因此我只設計了三個(gè)簡(jiǎn)單的問(wèn)題然學(xué)生快速進(jìn)入主題。

  如何驗證內角和是180°,是我一直比較糾結的.環(huán)節。由于小學(xué)生的知識背景有限,無(wú)法利用證明給予嚴格的驗證。只能通過(guò)動(dòng)手操作、空間想象來(lái)讓孩子體會(huì ),這些都有“實(shí)驗”的特點(diǎn),那么就都會(huì )有誤差,其實(shí)都無(wú)法嚴格的證明。但是這節課我們除了要尊重知識的嚴謹還應該尊重孩子的認知。如果通過(guò)剪拼、折疊、想象后,還有的孩子認為三角形內角和是180°值得懷疑的話(huà),這無(wú)非也是件好事,說(shuō)明孩子體會(huì )到了這些方法的不嚴謹,同時(shí)對知識有一種尊重,對自己的操作結果充滿(mǎn)自信,否則拼個(gè)差不多也可以簡(jiǎn)單的認同了內角和是180°。

  本節課的練習的設置也是努力做到有梯度、有趣味、有拓展。從開(kāi)始的搶答內角和體會(huì )三角形內角和跟大小無(wú)關(guān)、跟形狀無(wú)關(guān),到已知兩個(gè)角的度數求第三個(gè)角,這些都是鞏固。之后的,求拼接兩個(gè)完全一樣的直角三角形后,得到的圖形的內角和是多少度,求被剪開(kāi)的三角形,形成的新圖形的內角和是多少度,這些都是對三角形內角和的一次拓展。讓學(xué)生的認知發(fā)生沖突,提出挑戰。

  給學(xué)生一個(gè)平臺,她會(huì )給你一片精彩。通過(guò)動(dòng)手操作來(lái)驗證內角和是否是180°,學(xué)生最容易出現的就是把3個(gè)角剪下來(lái)拼一拼,個(gè)別人可能會(huì )想到折的方法。而這節課上有個(gè)小姑娘研究的是直角三角形,她的折法很巧妙,將兩個(gè)銳角折過(guò)來(lái),剛好拼成一個(gè)直角,這個(gè)直角和原來(lái)三角形已有的直角就重疊在了一起,兩個(gè)直角就180°。雖然我知道這樣的方法,但是通過(guò)試講,孩子們沒(méi)有這樣的表現,我就沒(méi)有奢求什么。但是今天的課堂太豐富多元了。這樣的方法都出現了讓我覺(jué)得特別值得肯定。為什么會(huì )這樣呢?我想還是因為我給了他們足夠的時(shí)間去思考。當有了空間,孩子才會(huì )施展他們的才華。這是我的一大收獲。

  前邊驗證時(shí)間過(guò)多,到練習時(shí)間就有些少,特別是求四邊形和六邊形內角和時(shí),給的時(shí)間過(guò)短,學(xué)生沒(méi)有充分思維。

  總而言之,這次的公開(kāi)課,給了我一次學(xué)習和鍛煉的機會(huì )。在教案設計時(shí),該怎么樣把每一個(gè)環(huán)節落實(shí)到位,怎么樣說(shuō)好每一句話(huà),預設好每一個(gè)環(huán)節,在教研中聽(tīng)取各位教師的點(diǎn)評,讓我有了茅塞頓開(kāi)的感覺(jué)。在此,我衷心感謝數學(xué)團隊教師對我中肯的評價(jià),感謝他們對我的直言不諱,無(wú)私奉獻自己的想法,讓我在教學(xué)中,能夠在一個(gè)輕松和諧的教學(xué)氛圍中與學(xué)生共同去探討,去發(fā)現,去學(xué)習。

三角形內角和教學(xué)設計10

  教學(xué)目標:

  1、通過(guò)測量一量、拼一拼、折一折三個(gè)活動(dòng),探索和發(fā)現三角形三個(gè)內角的度數和等于180°。

  2、已知三角形兩個(gè)角的度數,會(huì )求出第三個(gè)角的度數。

  3、經(jīng)歷三角形內角和的研究方法,感受數學(xué)研究方法。

  教學(xué)重點(diǎn):

  1、探索和發(fā)現三角形三個(gè)內角的度數和等于180°。

  2、已知三角形兩個(gè)角的度數,會(huì )求出第三個(gè)角的度數。

  教學(xué)難點(diǎn):掌握探究方法(猜想-驗證-歸納總結),學(xué)會(huì )用“轉化”的數學(xué)思想探究三角形內角和。

  教學(xué)用具:表格、課件。

  學(xué)具準備:各種三角形、剪刀、量角器。

  一、創(chuàng )設情境揭示課題。

  1、一天兩個(gè)三角形發(fā)生了爭執,他們請你們來(lái)評評理。大三角形說(shuō):“我的個(gè)頭大,所以我的內角和一定比你大!毙∪切魏懿桓市牡卣f(shuō):“我有一個(gè)鈍角,我的內角和一定比你大!。誰(shuí)說(shuō)得有道理呢?今天讓我們來(lái)做一回裁判吧。

  生1:大三角形大(個(gè)子大)

  生2:小三角形大(有鈍角)

 。ń處煵蛔雠袛,讓學(xué)生帶著(zhù)問(wèn)題進(jìn)入新課)

  2、什么是三角形的內角和?(板書(shū):內角和)

  講解:三角形內兩條邊所夾的角就叫做這個(gè)三角形的內角。每個(gè)三角形都有三個(gè)內角,這三個(gè)內角的度數加起來(lái)就是三角形的內角和。

  二、自主探究,合作交流。

 。ㄒ唬┨岢鰡(wèn)題:

  1、你認為誰(shuí)說(shuō)得對?你是怎么想的?

  2、你有什么辦法可以比較一下這兩個(gè)三角形的內角和呢?

  生1:用量角器量一量三個(gè)內角各是多少度,把它們加起來(lái),再比較。

  生2:用拼一拼的辦法把三個(gè)角拼到一起看它們能不能組成平角。

  生3:用折一折的辦法把三個(gè)角折到一起看它們能不能組成平角

 。ǘ┨剿髋c發(fā)現

  活動(dòng)一:量一量

 。1)①了解活動(dòng)要求:(屏幕顯示)

  A、在練習本上畫(huà)一個(gè)三角形,量一量三角形三個(gè)內角的度數并標注。(測量時(shí)要認真,力求準確)

  B、把測量結果記錄在表格中,并計算三角形內角和。

  C、討論:從剛才的測量和計算結果中,你發(fā)現了什么?

 。ㄒ龑仡櫥顒(dòng)要求)

 、谛〗M合作。

 、蹍R報交流。

  你們測量了幾個(gè)三角形?它們的內角和分別是多少?從測量和計算結果中你們發(fā)現了什么?

 。ㄒ龑W(xué)生發(fā)現每個(gè)三角形的.三個(gè)內角和都在180°,左右。)

 。2)提出猜想

  剛才我們通過(guò)測量和計算發(fā)現了三角形內角和都在180度左右,那你能不能大膽的猜測一下:三角形內角和是否相等?三角形的內角和等于多少度呢?(板書(shū):猜測)

  活動(dòng)二:拼一拼,驗證猜想

  這個(gè)猜想是否成立呢?我們要想辦法來(lái)驗證一下。(板書(shū)驗證)

  引導:180°,跟我們學(xué)過(guò)的什么角有關(guān)?我們課前準備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個(gè)內角轉換成一個(gè)平角呢?

 。1)小組合作,討論驗證方法。(把三個(gè)角撕下來(lái),拼在一起,3個(gè)角拼成了一個(gè)平角,所以三角形內角和就是180°)。

 。2)討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結論呢?

 。3)分組匯報,討論質(zhì)疑

 。4)課件演示,驗證結果

  活動(dòng)三:折一折

  師生一起活動(dòng),教師先讓學(xué)生看課件演示,然后拿出準備好的三角形紙艮老師一起折一折。

 。ò讶切蔚慕1折向它的對邊,使頂點(diǎn)落在對邊上,然后另外兩個(gè)角相向對折,使它們的頂點(diǎn)與角1的頂點(diǎn)互相重合,也證明了三角形內角和等于180°,)。

  討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結論?

  提問(wèn):還有沒(méi)有其它的方法?

  3、回顧兩種方法,歸納總結,得出結論。

 。1)引導學(xué)生得出結論。

  孩子們,三角形內角和到底等于多少度呢?”

  學(xué)生答:“180°!”

 。2)總結方法,齊讀結論

  我們通過(guò)動(dòng)作操作,折一折,拼一拼,把三角形的三個(gè)內角轉換成了一個(gè)平角,成功的得到了這個(gè)結論,讓我們?yōu)樽约旱某晒恼!齊讀結論。(板書(shū):得到結論)

 。3)解釋測量誤差

  為什么我們剛才通過(guò)測量,計算出來(lái)的三角形內角和不是180°,呢?

  那是因為我們在測量時(shí),由于測量工具、測量操作等各方面的原因,使我們的測量結果存在一定的誤差。實(shí)際上,三角形內角和就等于180°

 。ㄈ┗仡檰(wèn)題:

  現在你知道這兩個(gè)三角形誰(shuí)說(shuō)得對了嗎?(都不對。

  為什么?請大家一起,自信肯定的告訴我。

  生:因為三角形內角和等于1800180°。(齊讀)

  三、鞏固深化,加深理解。

  1、試一試:數學(xué)書(shū)28頁(yè)第3題

  ∠A=180°-90°-30°

  2、練一練:數學(xué)書(shū)29頁(yè)第一題(生獨立解決)

  ∠A=180°-75°-28°

  3、小法官:數學(xué)書(shū)29頁(yè)第二題

  四、回顧課堂,滲透數學(xué)方法。

  1、總結:猜想—驗證—歸納—應用的數學(xué)方法。

  2、介紹:三角形內角和等于180度這個(gè)結論的由來(lái);數學(xué)領(lǐng)域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。

  3、課堂延伸活動(dòng):探索——多邊形內角和

  板書(shū)設計:

  探索與發(fā)現(一)

  三角形內角和等于180°

三角形內角和教學(xué)設計11

  設計思路

  遵循由特殊到一般的規律進(jìn)行探究活動(dòng)是這節課設計的主要特點(diǎn)之一。學(xué)生對三角尺上每個(gè)角的度數比較熟悉,就從這里入手。先讓學(xué)生算出每塊三角尺三個(gè)內角的和是180°,引發(fā)學(xué)生的猜想:其它三角形的內角和也是180°嗎?接著(zhù),引導學(xué)生小組合作,任意畫(huà)出不同類(lèi)型的三角形,用通過(guò)量一量、算一算,得出三角形的內角和是180°或接近180°(測量誤差),再引導學(xué)生通過(guò)剪拼的方法發(fā)現:各類(lèi)三角形的三個(gè)內角都可以拼成一個(gè)平角。再利用課件演示進(jìn)一步驗證,由此獲得三角形的內角和是180°的結論。這一系列活動(dòng)潛移默化地向學(xué)生滲透了“轉化”數學(xué)思想,為后繼學(xué)習奠定了必要的基礎。

  最后讓學(xué)生運用結論解決實(shí)際問(wèn)題,練習的安排上,注意練習層次,共安排三個(gè)層次,逐步加深。練習形式具有趣味性,激發(fā)了學(xué)生主動(dòng)解題的積極性。第一個(gè)練習從知識的直接應用到間接應用,數學(xué)信息的出現從比較顯現到較為隱藏。這些題檢測不同層次的學(xué)生是否掌握所學(xué)知識應該達到的基本要求,顧及到智力水平發(fā)展較慢和中等的同學(xué),第3個(gè)練習設計了開(kāi)放性的練習,在小組內完成。由一個(gè)同學(xué)出題,其它三個(gè)同學(xué)回答。先給出三角形兩個(gè)內角的度數,說(shuō)出另外一個(gè)內角。有唯一的答案。訓練多次后,只給出三角形一個(gè)內角,說(shuō)出其它兩個(gè)內角,答案不唯一,可以得出無(wú)數個(gè)答案。讓學(xué)生在游戲中消除疲倦激發(fā)興趣,拓展學(xué)生思維。兼顧到智力水平發(fā)展較快的同學(xué)。在整個(gè)教學(xué)設計中,本著(zhù)“學(xué)貴在思,思源于疑”的思想,不斷創(chuàng )設問(wèn)題情境,讓學(xué)生去實(shí)驗、去發(fā)現新知識的奧妙,從而讓學(xué)生在動(dòng)手操作、積極探索的活動(dòng)中掌握知識,積累數學(xué)活動(dòng)經(jīng)驗,發(fā)展空間觀(guān)念和推理能力。

  教學(xué)目標

  1、讓學(xué)生親自動(dòng)手,通過(guò)量、剪、拼等活動(dòng)發(fā)現、證實(shí)三角形內角和是180°,并會(huì )應用這一知識解決生活中簡(jiǎn)單的實(shí)際問(wèn)題。

  2、讓學(xué)生在動(dòng)手獲取知識的過(guò)程中,培養學(xué)生的創(chuàng )新意識、探索精神和實(shí)踐能力。并通過(guò)動(dòng)手操作把三角形內角和轉化為平角的探究活動(dòng),向學(xué)生滲透“轉化”數學(xué)思想。

  3、使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動(dòng)學(xué)習數學(xué)的興趣。

  教材分析

  三角形的內角和是三角形的一個(gè)重要特征。本課是安排在學(xué)習三角形的概念及分類(lèi)之后進(jìn)行的,它是學(xué)生以后學(xué)習多邊形的內角和及解決其它實(shí)際問(wèn)題的基礎。學(xué)生在掌握知識方面:已經(jīng)掌握了三角形的分類(lèi),比較熟悉平角等有關(guān)知識;能力方面:經(jīng)過(guò)三年多的學(xué)習,已具備了初步的動(dòng)手操作能力和主動(dòng)探究能力以及合作學(xué)習的習慣。

  因此,教材很重視知識的探索與發(fā)現,安排了一系列的實(shí)驗操作活動(dòng)。教材呈現教學(xué)內容時(shí),不但重視體現知識的形成過(guò)程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒(méi)有直接給出結論,而是通過(guò)量、算、拼等活動(dòng),讓學(xué)生探索、實(shí)驗、發(fā)現、討論交流、推理歸納出三角形的內角和是180°。

  教學(xué)重點(diǎn)

  讓學(xué)生經(jīng)歷“三角形內角和是180°”這一知識的形成、發(fā)展和應用的全過(guò)程。

  教學(xué)準備

  多媒體課件、學(xué)具。

  教學(xué)過(guò)程

  一、激趣引入

 。ㄒ唬┱J識三角形內角

  師:我們已經(jīng)認識了什么是三角形,誰(shuí)能說(shuō)出三角形有什么特點(diǎn)?

  生1:三角形是由三條線(xiàn)段圍成的圖形。

  生2:三角形有三個(gè)角,……

  師:請看屏幕(課件演示三條線(xiàn)段圍成三角形的過(guò)程)。

  師:三條線(xiàn)段圍成三角形后,在三角形內形成了三個(gè)角,(課件分別閃爍三個(gè)角及的弧線(xiàn)),我們把三角形里面的這三個(gè)角分別叫做三角形的內角。(這里,有必要向學(xué)生直觀(guān)介紹“內角”。)

 。ǘ┰O疑,激發(fā)學(xué)生探究新知的心理

  師:請同學(xué)們幫老師畫(huà)一個(gè)三角形,能做到嗎?(激發(fā)學(xué)生主動(dòng)學(xué)習的心理)

  生:能。

  師:請聽(tīng)要求,畫(huà)一個(gè)有兩個(gè)內角是直角的.三角形,開(kāi)始。(設置矛盾,使學(xué)生在矛盾中去發(fā)現問(wèn)題、探究問(wèn)題。)

  師:有誰(shuí)畫(huà)出來(lái)啦?

  生1:不能畫(huà)。

  生2:只能畫(huà)兩個(gè)直角。

  生3:只能畫(huà)長(cháng)方形。

  師(課件演示):是不是畫(huà)成這個(gè)樣子了?哦,只能畫(huà)兩個(gè)直角。

  師:?jiǎn)?wèn)題出現在哪兒呢?這一定有什么奧秘?想不想知道?

  生:想。

  師:那就讓我們一起來(lái)研究吧!

 。ń沂久,巧妙引入新知的探究)

  二、動(dòng)手操作,探究新知

 。ㄒ唬┭芯刻厥馊切蔚膬冉呛

  師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個(gè)角的度數。(課件閃動(dòng)其中的一塊三角板)

  生:90°、60°、30°。(課件演示:由三角板抽象出三角形)

  師:也就是這個(gè)三角形各角的度數。它們的和怎樣?

  生:是180°。

  師:你是怎樣知道的?

  生:90°+60°+30°=180°。

  師:對,把三角形三個(gè)內角的度數合起來(lái)就叫三角形的內角和。

  師:(課件演示另一塊三角板的各角的度數。)這個(gè)呢?它的內角和是多少度呢?

  生:90°+45°+45°=180°。

  師:從剛才兩個(gè)三角形內角和的計算中,你發(fā)現什么?

  生1:這兩個(gè)三角形的內角和都是180°。

  生2:這兩個(gè)三角形都是直角三角形,并且是特殊的三角形。

 。ǘ┭芯恳话闳切蝺冉呛

  1、猜一猜。

  師:猜一猜其它三角形的內角和是多少度呢?同桌互相說(shuō)說(shuō)自己的看法。

  生1:180°。

  生2:不一定。

  ……

  2、操作、驗證一般三角形內角和是180°。

 。1)小組合作、進(jìn)行探究。

  師:所有三角形的內角和究竟是不是180°,你能用什么辦法來(lái)證明,使別人相信呢?

  生:可以先量出每個(gè)內角的度數,再加起來(lái)。

  師:哦,也就是測量計算,是嗎?那就請四人小組共同研究吧!

  師:每個(gè)小組都有不同類(lèi)型的三角形。每種類(lèi)型的三角形都需要驗證,先討論一下,怎樣才能很快完成這個(gè)任務(wù)。(課前每個(gè)小組都發(fā)有銳角三角形、直角三角形、鈍角三角形,指導學(xué)生選擇解決問(wèn)題的策略,進(jìn)行合理分工,提高效率。)

 。2)小組匯報結果。

  師:請各小組匯報探究結果。

  生1:180°。

  生2:175°。

  生3:182°。

  (三)繼續探究

  師:沒(méi)有得到統一的結果。這個(gè)辦法不能使人很信服,怎么辦?還有其它辦法嗎?

  生1:有。

  生2:用拼合的辦法,就是把三角形的三個(gè)內角放在一起,可以拼成一個(gè)平角。

  師:怎樣才能把三個(gè)內角放在一起呢?

  生:把它們剪下來(lái)放在一起。

  1、用拼合的方法驗證。

  師:很好,請用不同的三角形來(lái)驗證。

  師:小組內完成,仍然先分工怎樣才能很快完成任務(wù),開(kāi)始吧。

  2、匯報驗證結果。

  師:先驗證銳角三角形,我們得出什么結論?

  生1:銳角三角形的內角拼在一起是一個(gè)平角,所以銳角三角形的內角和是180°。

  生2:直角三角形的內角和也是180°。

  生3:鈍角三角形的內角和還是180°。

  3、課件演示驗證結果。

  師:請看屏幕,老師也來(lái)驗證一下,是不是跟你們得到的結果一樣?(播放課件)

  師:我們可以得出一個(gè)怎樣的結論?

  生:三角形的內角和是180°。

 。ń處煱鍟(shū):三角形的內角和是180°學(xué)生齊讀一遍。)

  師:為什么用測量計算的方法不能得到統一的結果呢?

  生1:量的不準。

  生2:有的量角器有誤差。

  師:對,這就是測量的誤差。

三角形內角和教學(xué)設計12

  教材內容:

  北師大版義務(wù)教育課程標準實(shí)驗教材四年級下冊。

  教學(xué)目標:

  1、經(jīng)歷觀(guān)察、猜想、實(shí)驗、驗證等數學(xué)活動(dòng),探索并發(fā)現三角形的內角和180°。在實(shí)驗活動(dòng)中,體驗探索的過(guò)程和方法。

  2、掌握三角形內角和是180°這一性質(zhì),并能應用這一性質(zhì)解決一些簡(jiǎn)單的問(wèn)題。

  3、經(jīng)歷探究過(guò)程,發(fā)展推理能力,感受數學(xué)的邏輯美。

  教學(xué)難點(diǎn)、重點(diǎn):經(jīng)歷觀(guān)察、猜想、實(shí)驗、驗證等數學(xué)活動(dòng),探索并發(fā)現三角形的內角和規律。

  教具準備:直角三角形、銳角三角形、鈍角三角形各3個(gè),大三角形、小三角形各1個(gè)。

  學(xué)具準備:直角三角形、銳角三角形、鈍角三角形各3個(gè)。

  教學(xué)設計意圖:

  “三角形的內角和180°”是三角形的一個(gè)重要性質(zhì),教材通過(guò)多種方法的操作實(shí)驗,讓學(xué)生確信這一個(gè)性質(zhì)的正確性。根據學(xué)生已有的知識經(jīng)驗和教材的內容特點(diǎn),本著(zhù)“學(xué)生的數學(xué)學(xué)習過(guò)程是一個(gè)自主構建自己對數學(xué)知識的理解過(guò)程”的教學(xué)理念,采用探究式教學(xué)方式,讓學(xué)生經(jīng)歷觀(guān)察、猜想、實(shí)驗、反思等數學(xué)活動(dòng),體驗知識的形成過(guò)程。整個(gè)教學(xué)設計力求改變學(xué)生的學(xué)習方式,突出學(xué)生的主體性。在教師的組織引導下,讓學(xué)生在開(kāi)放的學(xué)習過(guò)程中,自始至終處于積極狀態(tài),主動(dòng)參與學(xué)習過(guò)程,自主地進(jìn)行探索與發(fā)現,多角度和多樣化地解決問(wèn)題,從而實(shí)現知識的自我建構,掌握科學(xué)研究的方法,形成實(shí)事求事的科學(xué)探究精神。

  教學(xué)過(guò)程:

  活動(dòng)一:設疑激趣

  師:我們已經(jīng)認識了三角形,關(guān)于三角形你知道了什么?

  生1:三角形有3條邊、3個(gè)角。

  生2:三角形按角分可以分為銳角三角形、直角三角形、鈍角三角形;三角形按邊分可以分為等腰三角形和不等邊三角形。

  生3:每種三角形都至少有兩個(gè)銳角。

  師:三角形有3個(gè)角,這3個(gè)角又叫三角形的內角。三角形按內角的不同分為銳角三角形、直角三角形、鈍角三角形。

  師:能不能畫(huà)一個(gè)含有兩個(gè)直角或兩個(gè)鈍角的三角形呢?為什么?

  生1:我試著(zhù)畫(huà)過(guò),畫(huà)不出來(lái)。

  生2:因為每個(gè)三角形至少有兩個(gè)銳角,所以不可能畫(huà)出含有兩個(gè)直角或兩個(gè)鈍角的三角形。

  生3:三角形的內角和是180°,兩個(gè)直角的和已經(jīng)是180°,所以不可能。

  師:你能解釋一下什么是“三角形的內角和”嗎?你是怎樣知道“三角形的內角和是180°”的?

  生:把三角形的三個(gè)內角的度數相加就是三角形的內角和!叭切蔚膬冉呛褪180°”我是從書(shū)上看到的。

  師:你驗證過(guò)了嗎?

  生:沒(méi)有。

  師:三角形的內角和是不是180°?咱們還沒(méi)有認真地研究過(guò),接下來(lái),我們就一起來(lái)研究三角形的內角和。

  設計意圖:“我們已經(jīng)認識了三角形,關(guān)于三角形你知道什么?”課一開(kāi)始,教師就設計了一個(gè)空間容量比較大的問(wèn)題,旨在讓學(xué)生自主復習三角形的有關(guān)知識,引出三角形的內角概念。然后創(chuàng )設一個(gè)能激發(fā)學(xué)生探究欲望的問(wèn)題:“能不能畫(huà)出一個(gè)含有兩個(gè)直角或兩個(gè)鈍角的三角形呢?”有的學(xué)生通過(guò)動(dòng)手畫(huà),發(fā)現一個(gè)三角形中不可能有兩個(gè)直角或兩個(gè)鈍角;有的學(xué)生認為三角形的內角和是180°,兩個(gè)直角的和已是180°,所以不可能。這種認識可能來(lái)自于書(shū)本,也可能來(lái)自于家長(cháng)的輔導,但學(xué)生對于“三角形的內角和是180°”的體驗是沒(méi)有的,學(xué)生對所學(xué)的知識僅僅還是一種機械的識記,因此“三角形的內角和是否為180°”就成了學(xué)生急切需要探究的問(wèn)題。

  活動(dòng)二:自主探究

  師:請同學(xué)們拿出課前準備的材料,自己想辦法驗證三角形的內角和是不是180。?

  學(xué)生動(dòng)手操作驗證。

  師:請大家靜靜地思考1分鐘,將剛才的實(shí)驗過(guò)程在腦中梳理一下,F在請把自己的研究過(guò)程、結果跟大家交流一下。

  生1:我是用量角器測量的,我量的是直角三角形:

  90。+ 42。+47。=179。

  生2:我量的也是直角三角形:

  90。+43。+48。=181。

  生3:我量的是銳角三角形:

  32。+65。+83。=180。

  生4:我量的是鈍角三角形:

  120。+32。+30。=182。

  生5:……

  師:看到這些度量結果,你有什么想法?

  生1:為什么他們測量的結果會(huì )不相同?

  生2:也許我們測量的方法不精確。

  生3:也許我們的量角器不標準。

  生4:也可能三角形的內角和不一定都是180°。

  師:是呀,用量角器度量容易出現誤差,但這些度量的結果還是比較接近的,都在180°左右。

  師:有沒(méi)有沒(méi)使用量角器來(lái)驗證的呢?

  生:我是用三個(gè)相同的三角形來(lái)接的(如圖)!1、∠2、∠3剛好拼成一個(gè)平角,所以三角形的內角和是180°。

  師:你怎么知道這三個(gè)角拼成的大角剛好是一個(gè)平角呢?有辦法驗證嗎?

  生1:用量角器測量不就知道了嗎?

  生2:用三角板的兩個(gè)直角去拼來(lái)驗證。

  生3:因為平角的兩條邊成一條直線(xiàn),所以可用直尺來(lái)檢驗。

  生4:再拿三個(gè)相同的三角形按上面的方法進(jìn)行拼,這樣6個(gè)相同的三角形,中間就可以拼出一個(gè)周角(如圖),周角的一半剛好是平角。

  師:通過(guò)剛才的驗證,可以說(shuō)明∠1、∠2、∠3拼成的角是平角,那么銳角三角形的三個(gè)內角能拼成一個(gè)平角嗎?鈍角三角形呢?請大家試一試。師:如果現在只有一個(gè)三角形怎么辦?

  生:我是將銳角三角形的三個(gè)角分別撕下來(lái),拼成一個(gè)平角,平角是180°所以銳角三角形的內角和是180°。

  師:直角三角形、鈍角三角形行嗎?來(lái)試一試。

  生1:老師,不剪下三角形的三個(gè)內角也可以驗證。只要將三角形的三個(gè)內角折拼在一起,看看是不是拼成一個(gè)平角就可以了。

  師:大家就用折拼的'方法試一試。

  學(xué)生操作驗證。

  師:剛才我們除了用量角器度量的方法,同學(xué)們還想出了其他一些方法:用三個(gè)相同的三角形拼、剪拼、折拼等方法,這些方法形式上看起來(lái)不一樣,其實(shí)有共同點(diǎn)嗎?

  生:都是將三角形的三個(gè)內角拼在一起,組成一個(gè)平角來(lái)驗證三角形的內角和是不是180°。

  師:通過(guò)上面的實(shí)驗,你 可以得出什么結論?

  生:三角形的內角和是180。

  師:是任意三角形嗎?剛才我們才驗證了幾個(gè)三角形呀?怎么就可以說(shuō)是任意三角形呢?

  生:三角形按角分只有銳角三角形、直角三角形、鈍角三角形三種,剛才我們都驗證過(guò)了。

  師:(出示一個(gè)大三角形)它的內角和是多少度?如果將這個(gè)三角形縮。ǔ鍪疽粋(gè)小三角形),它的內角和又是多少度?為什么?

  生:三角形的三條邊縮短了,可它的三個(gè)角的大小沒(méi)變,所以它的內角和還是180。

  師生小結:三角形不論形狀、大小,它的內角和總是180。

  設計意圖:學(xué)生明確探究主題后,教師只為學(xué)生提供探究所需的材料,而不直接給出實(shí)驗的方法和程序,激勵學(xué)生自己想辦法實(shí)驗驗證,獲得結論。然后引導學(xué)生交流、評價(jià)、反思與提升。驗證過(guò)程中較好地體現了解決同一問(wèn)題思維方法,驗證策略的多樣性。促進(jìn)了學(xué)生發(fā)散思維能力的提高,提升了思維品質(zhì)。

  活動(dòng)三:應用拓展

  1、計算下面各個(gè)三角形中的∠B的度數。

  師:(圖2)怎樣求∠B?

  生:180。-90。-55。=35。

  師:還有不同的解法嗎?

  生:180!2-55。=35。,因為三角形的內角和是180。,其中一個(gè)直角是90。,另外兩個(gè)銳角的和剛好是90。

  師:是不是任意一個(gè)直角三角形的兩銳角和都是90。呢?能驗證一下嗎?

  生:因為任意三角形的內角和是180。,其中一個(gè)直角是90。,所以其他兩個(gè)銳角的和肯定是90。

  師:有沒(méi)有反對意見(jiàn)或表示懷疑的?從中我們可以發(fā)現一條什么規律?

  生:直角三角形的兩個(gè)銳角和是90。

  2、一個(gè)等腰三角形頂角是90。,兩個(gè)底角分別是多少度?

  3、等邊三角形的每個(gè)內角是多少度?

  師:現在你能解決為什么一個(gè)三角形里不能有兩個(gè)直角或兩個(gè)鈍角嗎?

  生:略。

  師:通過(guò)這節課的學(xué)習,你還有什么疑問(wèn)或還想研究什么問(wèn)題?

  生:三角形有內角和,三角形有外角和嗎?

  師:你知道三角形的外角在哪兒?jiǎn)?三角形有外角和,它的外角和是多少度呢?有興趣的同學(xué)請課后研究。

  課末,教師激勵學(xué)生提出新的問(wèn)題:通過(guò)這節課的學(xué)習,你還有什么疑問(wèn)或者還想研究什么問(wèn)題?培養學(xué)生的問(wèn)題意識,同時(shí)讓學(xué)生帶著(zhù)問(wèn)題走出教室,拓展學(xué)生數學(xué)學(xué)習的時(shí)間和空間。

三角形內角和教學(xué)設計13

  微課作品介紹本微課是蘇教版小學(xué)數學(xué)四年級下冊《三角形內角和》的課前先學(xué)指導,學(xué)生在家觀(guān)看視頻內容,同時(shí)結合學(xué)習任務(wù)單,在視頻的指導下通過(guò)猜、量、算、剪、拼等方法探索三角形的內角和是180度。學(xué)生在課前利用視頻完成學(xué)習任務(wù)單,然后到學(xué)校課堂中和老師、同學(xué)進(jìn)行交流,再進(jìn)一步提升。

  教學(xué)需求分析適用對象分析該微課的適用對象是蘇教版四年級下學(xué)期的小學(xué)生,學(xué)生應認識三角形的基本特征,學(xué)習過(guò)角和角的度量,知道平角是180度。具備了一定的動(dòng)手操作能力和數學(xué)思維能力。

  學(xué)習內容分析該微課讓學(xué)生發(fā)現、驗證三角形的內角和是180度的結論。這部分內容是在學(xué)生認識了三角形的基本特征和三邊的關(guān)系后,三角形分類(lèi)前學(xué)習的。這在蘇教版中和原來(lái)的教材不同,放在這里是因為三角形內角和是學(xué)生進(jìn)一步學(xué)習和探究三角形分類(lèi)方法的重要前提。學(xué)生知道了三角形的內角和是180度,對三角形分類(lèi)及命名的方法,才能知其然,還能知其所以然。

  教學(xué)目標分析:

  1、通過(guò)學(xué)生的實(shí)際操作,理解并驗證三角形的內角和等于180°,并能夠運用結論解決簡(jiǎn)單的實(shí)際問(wèn)題;

  2、使學(xué)生通過(guò)觀(guān)察、實(shí)驗,經(jīng)歷猜想與驗證三角形內角和的探索過(guò)程,在活動(dòng)中發(fā)展學(xué)生的空間觀(guān)念和推理能力。

  3、已經(jīng)有不少學(xué)生知道了三角形內角和是180度,,但卻不知道怎樣才能得出這個(gè)結論,因此學(xué)生在學(xué)習時(shí)的主要目標是驗證三角形的內角和是180度。

  教學(xué)過(guò)程設計本微課教學(xué)過(guò)程:

  一、明確多邊形的內角、內角和概念。

  首先要明確概念,才好繼續研究。內角、內角和以前學(xué)生沒(méi)有學(xué)過(guò),還是有必要給學(xué)生明確的。

  二、探索三角尺的內角和,猜想三角形的內角和。

  從學(xué)生熟悉的三角板開(kāi)始計算三角板的內角和,引發(fā)學(xué)生猜想,三角形的內角和是多少。

  三、驗證三角形內角和是否為180°。

  驗證分為三個(gè)層次:首先是量教材提供的三角形,算出內角和,可能會(huì )有誤差。其次把三角形三個(gè)內角拼在一起,拼成是平角180度。最后自己任意畫(huà)一個(gè)三角形剪下來(lái),拼一拼,得出結論。讓學(xué)生經(jīng)歷由特殊到一般的認知過(guò)程。

  四、拓展延伸,探究梯形、平行四邊形和六邊形內角和。

  由三角形的內角和,學(xué)生自然就會(huì )想到已學(xué)過(guò)的梯形、平行四邊形和六邊形內角和是多少呢。教師留下問(wèn)題讓學(xué)有余力的學(xué)生進(jìn)一步去探索。

  五、自主學(xué)習檢測

  學(xué)生觀(guān)看完了視頻是否學(xué)會(huì )了,是需要檢測的。學(xué)生通過(guò)做完自主檢測后進(jìn)行校對,檢驗自己所學(xué)。

  學(xué)習指導本微視頻應配合下面的學(xué)習任務(wù)單共同使用,在觀(guān)看視頻時(shí),根據視頻提示隨時(shí)暫停視頻依次完成任務(wù)單。

  自主學(xué)習前準備:

  請在自主學(xué)習前閱讀學(xué)習任務(wù)單的學(xué)習指南,并準備好數學(xué)書(shū)、一副三角尺、量角器、剪刀、鉛筆等學(xué)習用具。

  自主學(xué)習任務(wù)單:

  通過(guò)觀(guān)看教學(xué)資源自學(xué),完成下列學(xué)習任務(wù):

  任務(wù)一:明確多邊形的內角、內角和概念

  1、你認識下面的圖形嗎?他們各有幾個(gè)角,請在圖中標出來(lái)。

  2、你剛才標出的角,又叫做每個(gè)圖形的()。

  3、如果把一個(gè)圖形所有的內角的度數加起來(lái),所得的總和就是這個(gè)圖形的`()。

  4、你知道圖中長(cháng)方形和正方形的內角和是多少度嗎?你是怎么知道的?

  長(cháng)方形內角和正方形內角和

  任務(wù)二:探索三角尺的內角和,猜想三角形的內角和。

  1、請拿出一副三角尺,你知道每塊三角尺上各個(gè)角的度數?在圖上標出來(lái)。

  2、算一算,每個(gè)三角尺3個(gè)內角的和是多少度。

  3、根據你剛才的計算結果,你能猜想一下,任意一個(gè)三角形它的內角和的度數呢?

  任務(wù)三:驗證任意三角形內角和是否為180°

  1、請從數學(xué)書(shū)本第113頁(yè)剪下3個(gè)三角形,用量角器量出每個(gè)三角形3個(gè)內角的度數。

  算一算,每個(gè)三角形3個(gè)內角的和是多少度。

  2還可以用什么辦法來(lái)驗證剪下的這3個(gè)三角形的內角和等于180度?(把你的驗證方法展示在下面。)如果你想不出來(lái)請看下面的提示。

  溫馨提示:平角正好是180°,這三個(gè)內角能正好拼成一個(gè)平角嗎?

  3、自己任意畫(huà)一個(gè)三角形,先剪下來(lái),再拼一拼。

  4、你發(fā)現了什么?寫(xiě)在下面。

  5、請你回顧一下我們研究三角形形內角和是180度的過(guò)程?簡(jiǎn)單的寫(xiě)下來(lái)。

  任務(wù)四:拓展延伸

  任務(wù)一中還有梯形、平行四邊形和六邊形,如果你有興趣,你可以研究他們的內角和。

  任務(wù)五:自主學(xué)習檢測

  1、右邊三角形中,∠1=75°,∠2=40°,∠3=()°

  2、第3個(gè)三角形還可以怎樣計算,哪種更簡(jiǎn)便?

  3、一塊三角尺的內角和是180°,用兩塊完全一樣的三角尺拼成一個(gè)三角形,拼成的三角形內角和是多少度?

  4、用一張長(cháng)方形紙折一折,填一填

  配套學(xué)習資料蘇教版小學(xué)數學(xué)四年級下冊教材

  制作技術(shù)介紹Camtasia Studio軟件制作、PPT。

三角形內角和教學(xué)設計14

  教學(xué)內容

  人教版小學(xué)數學(xué)第八冊第五單元第85頁(yè)例5

  任務(wù)分析

  教材分析: 《三角形的內角和》是義務(wù)教育課程標準實(shí)驗教科書(shū)(數學(xué))四年級下冊第五單元《三角形》中的一個(gè)教學(xué)內容。這部分內容是在學(xué)生學(xué)習了角的度量,角的分類(lèi),三角形的認識,三角形的分類(lèi)的基上進(jìn)行教學(xué)的。它是三角形的一個(gè)重要性質(zhì),有助于學(xué)生理解三角形的三個(gè)內角之間的關(guān)系,也是進(jìn)一步學(xué)習的基礎。教材通過(guò)實(shí)際操作,引導學(xué)生用實(shí)驗的方法探索并歸納出這一規律,即任意一個(gè)三角形,它的內角和都是180度。教材在編寫(xiě)上也深刻的體現出了讓學(xué)生探究的特點(diǎn),通過(guò)動(dòng)手操作探究發(fā)現三角形內角和為180度。教學(xué)內容的核心思想體現在讓學(xué)生經(jīng)歷猜想—驗證—結論的過(guò)程,來(lái)認識和體驗三角形內角和的特點(diǎn)。

  學(xué)情分析:通過(guò)前面的學(xué)習,學(xué)生已經(jīng)掌握了三角形的一些基礎知識,會(huì )用工具量角、畫(huà)角,具備了探索三角形內角和的知識與基礎技能。在四年級上冊《角的度量》的學(xué)習中,學(xué)生有接觸到兩把三角尺的內角和是180°;并在相關(guān)的補充習題和數學(xué)練習冊的練習中,也有要求測量任意三角形的三個(gè)內角的度數并求出它們的和的練習,很多學(xué)生已經(jīng)知道了三角形的內角和是180°。但是要真正理解和掌握需要進(jìn)行驗證,因此,學(xué)生在這節課上的主要任務(wù)是通過(guò)實(shí)驗操作驗證三角形的.內角和是180°。

  教學(xué)目標

  1、通過(guò)實(shí)驗、操作、推理歸納出三角形內角和是180°。

  2、能運用三角形的內角和是180°這一規律,求三角形未知角的度數并運用解決實(shí)際生活問(wèn)題。

  3、通過(guò)拼擺,感受數學(xué)的轉化思想。

  教學(xué)重點(diǎn)

  探究發(fā)現和驗證“三角形的內角和180度”。

  教學(xué)難點(diǎn)

  驗證三角形的內角和是180度。

  教學(xué)準備

  多媒體課件,銳角三角形、直角三角形、鈍角三角形,剪刀,量角器等。

  教學(xué)過(guò)程

  一、復習舊知,學(xué)習鋪墊

  1、一個(gè)平角是多少度?等于幾個(gè)直角?

  2、如下圖,已經(jīng)∠ 1=35°,∠2=78°,求∠3是多少度?

  二、探究新知,理解規律

  1、說(shuō)明三角形的三個(gè)內角和

  說(shuō)出手中三角形的類(lèi)型(銳角三角形,直角三角形,鈍角三角形)并說(shuō)出三角形有幾個(gè)角?

  師(指出):三角形的這三個(gè)角叫做三角形的三個(gè)內角,這三個(gè)內角的度數和叫做三角形的內角和。

  板書(shū)課題:“三角形的內角和”。

  揭示課題:今天我們一起來(lái)探究三角形的內角和有什么規律。

  2、探究三角形的內角和規律

  探究1:量一量,算一算

  以小組為單位,用量角器計算出三種三角形的內角和各是多少度?

  生討論匯報,并引導學(xué)生發(fā)現:三角形的內角和接近180°。

  師:三角形的內角和接近180°,那它到底與180° 有怎樣的關(guān)系呢?

  學(xué)生預設:有學(xué)生可能會(huì )說(shuō)出三角形的內角和就是180°,這時(shí)老師可以提問(wèn),為什么就是180°?我們要進(jìn)行驗證,你有什么辦法呢?

  探究2:擺一擺,拼一拼

  引導:我們剛剛每個(gè)三角形都量了三次角,每一次度量都有誤差,所以量出來(lái)的內角和有誤差。能不能換一種方法減少度量的次數,減少誤差呢?

  生可能很難想到,可以提示學(xué)生:把三個(gè)內角拼成一個(gè)角就只要量一次角。讓我們一起動(dòng)手做一做

  如圖:

 。1)

  銳角的三個(gè)內角拼成了一個(gè)平角,引導學(xué)生說(shuō)出:銳角三角形的內角和是180°.

 。2)

  讓學(xué)生小組合作用同樣的方法,發(fā)現:直角三角形的內角和也是180°.

 。3)

  讓學(xué)生獨立用同樣的方法,發(fā)現:鈍角三角形的內角和也是180°.

  引導學(xué)生歸納:三角形的內角和是180°。

  是不是所有的三角形的內角和都是180°呢? (是,因為這三類(lèi)三角形包括了所有三角形。)

  板書(shū):三角形的內角和是180°

  三、鞏固練習,應用規律

  1、在一個(gè)三角形中,∠1=140°,∠3=25°,你能求出∠2的度數嗎?

  學(xué)生獨立完成,并說(shuō)出原因:因為三角形的內角和是180°,也就是∠1+∠2+∠3=180°,借助圖像

  ∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)

  = 180°-140°-25° =180°-(140°+25°)

  =40°-25° =180°-165°

  =15° =15°

  2、一個(gè)等腰三角形的頂角是80°,它的兩個(gè)底角各是多少度?

  學(xué)生分析:因為等腰三角形的兩個(gè)底角相等,又因為三角形的內角和是180°,所以

 。180°-80°)÷2

  =100°÷2

  =50°

  四、拓展練習,深化規律

  1、求出下面各角的度數。

 。1) (2)

  2、判斷

 。1)三角形任意兩個(gè)內角的和大于第三個(gè)角。( )

 。2)銳角三角形任意兩個(gè)內角的和大于直角。( )

 。3)有一個(gè)角是60°的等腰三角形不一定是等邊三角形。( )

  3、下面是兩塊三角形的玻璃打碎后留下的殘片,你知道它們原來(lái)各是什么三角形嗎?

 。 ) ( )

  五、課堂小結,分享提升

  1、談?wù)勥@節課你有什么收獲?

  2、課后思考題

  三角形的內角和是180°,那長(cháng)方形、正方形的內角和呢?(根據三角形的內角和是180°求,參考課本88頁(yè)第12題,完成89頁(yè)16題)

  板書(shū)設計

三角形內角和教學(xué)設計15

  【教材內容】

  北京市義務(wù)教育課程改革實(shí)驗教材(北京版)第九冊數學(xué)

  【教材分析】

  《三角形內角和》是北京市義務(wù)教育課程改革實(shí)驗教材(北京版)第九冊第三單元的內容,屬于空間與圖形的范疇,是在學(xué)生已經(jīng)掌握了三角形的穩定性和三角形的三邊關(guān)系相關(guān)知識后對三角形的進(jìn)一步研究,探索三角形的內角和等于180°。教材中安排了學(xué)生對不同形狀的、大小的三角形進(jìn)行度量,再運用拼、折、剪等方法發(fā)現三角形的內角和是180°。讓學(xué)生在自主探索中發(fā)現三角形的又一特性,更加深入的培養了學(xué)生的空間觀(guān)念。

  【學(xué)生分析】

  在四年級學(xué)生已經(jīng)掌握了角的概念、角的分類(lèi)和角的度量等知識。在本課之前,學(xué)生又掌握了三角形的穩定性研究了三角形的分類(lèi)。這些都為進(jìn)一步研究三角形內角和作了知識儲備和心理準備,為本課內容的教學(xué)作了鋪墊。三角形的內角和是三角形的一個(gè)重要性質(zhì)。它有助于理解三角形的三個(gè)內角之間的關(guān)系,是進(jìn)一步學(xué)習、研究幾何問(wèn)題的基礎。

  【教學(xué)目標】

  1、通過(guò)量、拼、折、剪等方法探索和發(fā)現三角形的內角和等于180°掌握并會(huì )應用這一規律解決實(shí)際的問(wèn)題。

  2、通過(guò)討論、爭辯、操作、推理發(fā)展學(xué)生動(dòng)手操作、觀(guān)察比較和抽象概括的能力。

  3、使學(xué)生掌握由特殊到一般的邏輯思辨方法和先猜想后研究問(wèn)題的方法。

  【教學(xué)重點(diǎn)】

  讓學(xué)生經(jīng)歷“三角形內角和是180度”這一知識的形成發(fā)展和應用的全過(guò)程。

  【教學(xué)難點(diǎn)】

  能利用學(xué)到的知識進(jìn)行合情的推理。

  【教具學(xué)具準備】

  課件、各種各樣的直角三角形、長(cháng)方形、剪刀、量角器、數學(xué)紙

  【教學(xué)過(guò)程】

  一、學(xué)具三角板,引入新課

  1、(出示兩個(gè)直角三角板),問(wèn):這是咱們同學(xué)非常熟悉的一種學(xué)習工具,是什么呀?(三角板)它們的外形是什么形狀的?(三角形)(課件:抽象出三角形)

  2、顧名思義一個(gè)三角形都有幾個(gè)角呀?(三個(gè))

  3、認識內角

 。1)在三角形的內部相臨兩條邊之間所夾的角叫做三角形的內角。(課件閃爍∠1)(板書(shū):三角形內角)∠1就叫做三角形的什么?這兩條邊夾的角∠2呢?∠3呢?

 。2)這個(gè)三角形內有幾個(gè)內角?(三個(gè))這個(gè)呢?(三個(gè))

 。ㄔO計意圖:由學(xué)生最熟悉的三角板引入新課,激發(fā)學(xué)生興趣的同時(shí)為后面的學(xué)習做準備)

  二、動(dòng)手操作,探索新知

 。ㄒ唬┲苯侨切蝺冉呛

 、、特殊直角三角形內角和

  1、根據我們以往對三角板的了解,你還記得每個(gè)三角形上每個(gè)內角各是多少度嗎?(生說(shuō)度數,師課件上在相應角出示度數:①90°、60°、30°,②90°、45°、45°)。

  2、觀(guān)察這兩個(gè)三角形的度數,你有什么發(fā)現?

  生1:都有一個(gè)直角,師:那我們就可以說(shuō)他們是什么三角形?(板書(shū):直角三角形)

  生2:我還發(fā)現他們內角加起來(lái)是180度。師:他真會(huì )觀(guān)察,你發(fā)現了嗎?快算一算是不是他說(shuō)的那樣?

 。ㄕn件):(1)90°+60°+30°=180°)

  那么另一個(gè)三角板的三個(gè)內角的總度數是多少?

 。ㄉ卮,師課件:(2)90°+45°+45°=180)

  3、你指的哪是180度?(生:這三個(gè)內角合起來(lái)是180度)

  4、在三角形內三個(gè)內角的`總度數又簡(jiǎn)稱(chēng)為三角形的內角和。(板書(shū):和)

  5、這個(gè)直角三角形的內角和是多少度?另一個(gè)呢?

  6、你還記得180度是我們學(xué)過(guò)的是什么角嗎?(平角)趕快在你的數學(xué)紙上畫(huà)一個(gè)平角。

 。◣煶鍪疽粋(gè)平角)問(wèn):平角是什么樣的?

  7、師述:角的兩邊形成一條直線(xiàn)就是平角。也就是180度,哦,這兩個(gè)直角三角形的內角和就組成這樣的一個(gè)角呀。

 、、一般直角三角形內角和

  1、老師還為你們準備了各種各樣的直角三角形,快拿出來(lái)看看。

  2、剛才的那兩個(gè)直角三角形的內角和是180度,你們手中的直角三角形的內角和是多少度呢?老師還為你們準備了一些學(xué)具,你能充分地利用這些學(xué)具,想辦法來(lái)研究直角三角形的內角和是多少度嗎?下面我們以小組為單位來(lái)研究,注意小組同學(xué)要明確分工可以一個(gè)人填表,另外的人一起動(dòng)手實(shí)驗看一看哪一組想出研究方法最多。

 。1)小組活動(dòng)(2)匯報

  哪個(gè)組愿意把你們的研究成果向大家展示?每個(gè)小組派代表發(fā)言。(在實(shí)物展臺上演示)

  三角形的種類(lèi)

  驗證方法

  驗證結果

  *“量一量”的方法:

  板書(shū):有一點(diǎn)誤差的度數

  *“剪一剪”的方法:

  我們在剪的時(shí)候要注意什么?剪完之后怎樣拼?拼成的是什么?你怎么知道是平角?(提示:可以在我們畫(huà)的平角上拼)(課件展示)

  現在我們也用這種方法試一試,看能不能拼成平角?(小組實(shí)驗)

  你們的直角三角形的內角和拼成的是平角嗎?也就是內角和是多少度?

  還有其他方法嗎?

  *“折一折”的方法:

  預設:①生:我是折的。師:怎樣折的?你能給大家演示嗎?

  學(xué)生演示(課件:折的過(guò)程)

 、趯W(xué)生沒(méi)有說(shuō)出來(lái),師:你們看老師還有一種方法請看:(課件:折的過(guò)程)其實(shí)折的方法和剪、撕的道理是一樣的,最后都是把三個(gè)內角拼成平角。(板書(shū):折)

  *推理:

  你們有用長(cháng)方形來(lái)研究直角三角形內角和度數的嗎?(課件:長(cháng)方形)快想一想用長(cháng)方形怎樣去研究?(課件:長(cháng)方形驗證的過(guò)程)

  這種方法就叫做推理,一般到中學(xué)以后我們經(jīng)常會(huì )用到。(板書(shū):推理)

  3、小結

 。1)通過(guò)我們剛才的研究,我們發(fā)現直角三角形的內角和都是多少度呀?(板書(shū):內角和是180°)剛才我們在測量的時(shí)候為什么會(huì )出現179度183度呢?看來(lái)只要是測量不可避免的會(huì )產(chǎn)生誤差。

 。2)在我們三角形的世界中,是只有直角三角形嗎?還有什么?(板書(shū):銳角三角形、鈍角三角形)

 。ㄔO計意圖:引導學(xué)生通過(guò)量、拼、推理等實(shí)踐操作活動(dòng),自主探究直角三角形的內角和是180度,體驗解決問(wèn)題策略的多樣化。通過(guò)這些過(guò)程使學(xué)生明白:探究問(wèn)題有不同的方法、途徑,并且方法之間可以互為驗證,達到結論的統一,從而使學(xué)生明白獲得探究問(wèn)題的方法比獲得結論更為重要。)

 。ǘ、銳角三角形、鈍角三角形的內角和

  1、請你們任意畫(huà)一個(gè)鈍角三角形,一個(gè)銳角三角形

  2、直角三角形的內角和是180度,銳角三角形、鈍角三角形的內角和又是多少度呢?你能利用我們剛才學(xué)到的知識來(lái)研究你所畫(huà)的三角形的內角和是多少度嗎?快試試,可以同桌討論。(學(xué)生操作,匯報,課件演示)我們是用什么方法來(lái)研究的?

  3、學(xué)生模仿老師操作說(shuō)理

  4、由此我們得到了銳角三角形的內角和是多少度?鈍角三角形的內角和呢?我們就可以說(shuō)所有三角形的內角和都是180度。

  師:這也是三角形的一個(gè)特性,現在你對三角形的這一特性有疑問(wèn)嗎?如果沒(méi)有的話(huà)請你用自信、肯定的語(yǔ)氣讀一讀(板書(shū):三角形的內角和是180°)。

 。ㄔO計意圖:引導學(xué)生通過(guò)直角三角形的內角和是180度來(lái)推導出銳角和鈍角三角形的內角和是180度,使學(xué)生初步掌握由特殊到一般的邏輯思辨方法。)

  三、鞏固新知,拓展應用

  我們就用三角形的這一特性來(lái)解決一些問(wèn)題

  1、兩個(gè)三角形拼成大三角形

 。1)每個(gè)三角形的內角和都是少度?

 。2)(課件把兩個(gè)三角形拼在一起)它的內角和是多少度?(這時(shí)學(xué)生答案又出現了180°和360°兩種。)師:究竟誰(shuí)對呢

  2、一個(gè)三角形去掉一部分

 。1)這是一個(gè)三角形,他的內角和是多少度?我從中剪去一個(gè)三角形他的內角和是多少度?

  再剪去一個(gè)三角形呢?(課件演示)

  你們看這兩個(gè)三角形他們的大小、形狀都怎么樣?但內角和都是180度,看來(lái)三角形的內角和的度數和他的大小形狀都無(wú)關(guān)。

 。2)我再把這個(gè)三角形剪去一部分,它的內角和是多少度?(課件:剪成四邊形)

  你能利用我們三角形的內角和是180度來(lái)研究這個(gè)四邊形的內角和是多少度嗎?

 。3)如果五邊形,你還能求出他的度數嗎?

 。ㄔO計意圖:充分利用多媒體資源幫助學(xué)生理解、消化、新的知識,能夠靈活的運用三角形的內角和等于180度。在此基礎上滲透數學(xué)的“轉化”思想和“分割”思想提高學(xué)生靈活運用和推理等各方面的能力。)

  四、總結評價(jià)、延伸知識

  通過(guò)這節課的學(xué)習研究你掌握了哪些知識?我們是怎樣研究的呢?

  師:先研究的是特殊直角三角形的內角和是180度,接著(zhù)通過(guò)量、拼等方法得到了直角三角形的內角和是180度,再利用直角三角形通過(guò)推理研究出銳角三角形和鈍角三角形的內角和是180度。

 。ㄔO計意圖:幫助學(xué)生梳理本節課的知識脈絡(luò )。)

【三角形內角和教學(xué)設計】相關(guān)文章:

《三角形的內角和》教學(xué)設計09-02

三角形內角和教學(xué)設計02-13

《三角形內角和》教學(xué)設計05-03

《三角形的內角和》教學(xué)設計05-08

三角形內角和教學(xué)設計15篇06-28

三角形內角和教學(xué)設計(15篇)06-28

三角形內角和教學(xué)設計(精選15篇)03-09

《三角形內角和》教學(xué)設計(15篇)05-14

《三角形內角和》教學(xué)設計15篇05-08

99久久精品免费看国产一区二区三区|baoyu135国产精品t|40分钟97精品国产最大网站|久久综合丝袜日本网|欧美videosdesexo肥婆