高一數學(xué)函數知識總結

時(shí)間:2023-11-20 12:05:17 曉怡 總結范文 我要投稿

高一數學(xué)函數知識總結

  總結就是把一個(gè)時(shí)間段取得的成績(jì)、存在的問(wèn)題及得到的經(jīng)驗和教訓進(jìn)行一次全面系統的總結的書(shū)面材料,它可使零星的、膚淺的、表面的感性認知上升到全面的、系統的、本質(zhì)的理性認識上來(lái),不妨讓我們認真地完成總結吧?偨Y你想好怎么寫(xiě)了嗎?以下是小編為大家整理的高一數學(xué)函數知識總結集合,供大家參考借鑒,希望可以幫助到有需要的朋友。

高一數學(xué)函數知識總結

  高一數學(xué)函數知識總結 1

  1.函數與映射的區別:

  2.求函數定義域

  常見(jiàn)的用解析式表示的函數f(x)的定義域可以歸納如下:

 、佼攆(x)為整式時(shí),函數的定義域為R

 、诋攆(x)為分式時(shí),函數的定義域為使分式分母不為零的實(shí)數集合。

 、郛攆(x)為偶次根式時(shí),函數的定義域是使被開(kāi)方數不小于0的實(shí)數集合。

 、墚攆(x)為對數式時(shí),函數的定義域是使真數為正、底數為正且不為1的實(shí)數集合。

 、萑绻鹒(x)是由幾個(gè)部分的數學(xué)式子構成的,那么函數定義域是使各部分式子都有意義的實(shí)數集合,即求各部分有意義的實(shí)數集合的交集。

 、迯秃虾瘮档亩x域是復合的各基本的函數定義域的交集。

 、邔τ谟蓪(shí)際問(wèn)題的背景確定的函數,其定義域除上述外,還要受實(shí)際問(wèn)題的制約。

  3.求函數值域

  (1)、觀(guān)察法:通過(guò)對函數定義域、性質(zhì)的觀(guān)察,結合函數的解析式,求得函數的值域;

  (2)、配方法;如果一個(gè)函數是二次函數或者經(jīng)過(guò)換元可以寫(xiě)成二次函數的形式,那么將這個(gè)函數的右邊配方,通過(guò)自變量的范圍可以求出該函數的值域;

  (3)、判別式法:

  (4)、數形結合法;通過(guò)觀(guān)察函數的圖象,運用數形結合的方法得到函數的值域;

  (5)、換元法;以新變量代替函數式中的某些量,使函數轉化為以新變量為自變量的函數形式,進(jìn)而求出值域;

  (6)、利用函數的單調性;如果函數在給出的定義域區間上是嚴格單調的,那么就可以利用端點(diǎn)的函數值來(lái)求出值域;

  (7)、利用基本不等式:對于一些特殊的分式函數、高于二次的函數可以利用重要不等式求出函數的值域;

  (8)、最值法:對于閉區間[a,b]上的連續函數y=f(x),可求出y=f(x)在區間[a,b]內的極值,并與邊界值f(a).f(b)作比較,求出函數的最值,可得到函數y的值域;

  (9)、反函數法:如果函數在其定義域內存在反函數,那么求函數的值域可以轉化為求反函數的定義域。

  高一數學(xué)函數知識總結 2

  1.函數的定義

  函數是高考數學(xué)中的重點(diǎn)內容,學(xué)習函數需要首先掌握函數的各個(gè)知識點(diǎn),然后運用函數的各種性質(zhì)來(lái)解決具體的問(wèn)題。

  設A、B是非空的數集,如果按照某種確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱(chēng)f:A-B為從集合A到集合B的一個(gè)函數,記作y=f(x),xA

  2.函數的定義域

  函數的定義域分為自然定義域和實(shí)際定義域兩種,如果給定的函數的解析式(不注明定義域),其定義域應指的是使該解析式有意義的自變量的取值范圍(稱(chēng)為自然定義域),如果函數是有實(shí)際問(wèn)題確定的,這時(shí)應根據自變量的實(shí)際意義來(lái)確定,函數的值域是由全體函數值組成的集合。

  3.求解析式

  求函數的解析式一般有三種種情況:

 。1)根據實(shí)際問(wèn)題建立函數關(guān)系式,這種情況需引入合適的變量,根據數學(xué)的有關(guān)知識找出函數關(guān)系式。

 。2)有時(shí)體中給出函數特征,求函數的解析式,可用待定系數法。

 。3)換元法求解析式,f[h(x)]=g(x)求f(x)的問(wèn)題,往往可設h(x)=t,從中解出x,代入g(x)進(jìn)行換元來(lái)解。掌握求函數解析式的前提是,需要對各種函數的性質(zhì)了解且熟悉。

  目前我們已經(jīng)學(xué)習了常數函數、指數與指數函數、對數與對數函數、冪函數、三角函數、反比例函數、二次函數以及由以上幾種函數加減乘除,或者復合的一些相對較復雜的函數,但是這種函數也是初等函數。

  高一數學(xué)函數知識總結 3

  一、函數的概念與表示

  1、映射

  (1)映射:設A、B是兩個(gè)集合,如果按照某種映射法則f,對于集合A中的任一個(gè)元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B。

  注意點(diǎn):

  (1)對映射定義的理解。

  (2)判斷一個(gè)對應是映射的方法。一對多不是映射,多對一是映射

  2、函數

  構成函數概念的三要素

 、俣x域

 、趯▌t

 、壑涤

  兩個(gè)函數是同一個(gè)函數的條件:三要素有兩個(gè)相同

  二、函數的解析式與定義域

  1、求函數定義域的主要依據:

  (1)分式的分母不為零;

  (2)偶次方根的被開(kāi)方數不小于零,零取零次方?jīng)]有意義;

  (3)對數函數的真數必須大于零;

  (4)指數函數和對數函數的底數必須大于零且不等于1;

  三、函數的值域

  1求函數值域的方法

 、僦苯臃ǎ簭淖宰兞縳的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡(jiǎn)單的復合函數;

 、趽Q元法:利用換元法將函數轉化為二次函數求值域,適合根式內外皆為一次式;

 、叟袆e式法:運用方程思想,依據二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;

 、芊蛛x常數:適合分子分母皆為一次式(x有范圍限制時(shí)要畫(huà)圖);

 、輪握{性法:利用函數的單調性求值域;

 、迗D象法:二次函數必畫(huà)草圖求其值域;

 、呃脤μ柡瘮

 、鄮缀我饬x法:由數形結合,轉化距離等求值域。主要是含絕對值函數

  四.函數的奇偶性

  1.定義:設y=f(x),x∈A,如果對于任意∈A,都有,則稱(chēng)y=f(x)為偶函數。

  如果對于任意∈A,都有,則稱(chēng)y=f(x)為奇

  函數。

  2.性質(zhì):

 、賧=f(x)是偶函數y=f(x)的圖象關(guān)于軸對稱(chēng),y=f(x)是奇函數y=f(x)的圖象關(guān)于原點(diǎn)對稱(chēng),

 、谌艉瘮礷(x)的定義域關(guān)于原點(diǎn)對稱(chēng),則f(0)=0

 、燮妗榔=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數的定義域D1,D2,D1∩D2要關(guān)于原點(diǎn)對稱(chēng)]

  3.奇偶性的判斷

 、倏炊x域是否關(guān)于原點(diǎn)對稱(chēng)②看f(x)與f(-x)的關(guān)系

  五、函數的單調性

  1、函數單調性的定義:

  2、設是定義在M上的函數,若f(x)與g(x)的單調性相反,則在M上是減函數;若f(x)與g(x)的單調性相同,則在M上是增函數。

  高一數學(xué)函數知識總結 4

  1. 函數的奇偶性

  (1)若f(x)是偶函數,那么f(x)=f(-x) ;

  (2)若f(x)是奇函數,0在其定義域內,則 f(0)=0(可用于求參數);

  (3)判斷函數奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或 (f(x)≠0);

  (4)若所給函數的解析式較為復雜,應先化簡(jiǎn),再判斷其奇偶性;

  (5)奇函數在對稱(chēng)的單調區間內有相同的單調性;偶函數在對稱(chēng)的單調區間內有相反的單調性;

  2. 復合函數的有關(guān)問(wèn)題

  (1)復合函數定義域求法:若已知 的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求 f(x)的定義域,相當于x∈[a,b]時(shí),求g(x)的值域(即 f(x)的定義域);研究函數的問(wèn)題一定要注意定義域優(yōu)先的原則。

  (2)復合函數的單調性由“同增異減”判定;

  3.函數圖像(或方程曲線(xiàn)的對稱(chēng)性)

  (1)證明函數圖像的對稱(chēng)性,即證明圖像上任意點(diǎn)關(guān)于對稱(chēng)中心(對稱(chēng)軸)的對稱(chēng)點(diǎn)仍在圖像上;

  (2)證明圖像C1與C2的對稱(chēng)性,即證明C1上任意點(diǎn)關(guān)于對稱(chēng)中心(對稱(chēng)軸)的對稱(chēng)點(diǎn)仍在C2上,反之亦然;

  (3)曲線(xiàn)C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱(chēng)曲線(xiàn)C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲線(xiàn)C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對稱(chēng)曲線(xiàn)C2方程為:f(2a-x,2b-y)=0;

  (5)若函數y=f(x)對x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線(xiàn)x=a對稱(chēng);

  (6)函數y=f(x-a)與y=f(b-x)的圖像關(guān)于直線(xiàn)x= 對稱(chēng);

  4.函數的周期性

  (1)y=f(x)對x∈R時(shí),f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,則y=f(x)是周期為2a的周期函數;

  (2)若y=f(x)是偶函數,其圖像又關(guān)于直線(xiàn)x=a對稱(chēng),則f(x)是周期為2︱a︱的周期函數;

  (3)若y=f(x)奇函數,其圖像又關(guān)于直線(xiàn)x=a對稱(chēng),則f(x)是周期為4︱a︱的周期函數;

  (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對稱(chēng),則f(x)是周期為2 的周期函數;

  (5)y=f(x)的圖象關(guān)于直線(xiàn)x=a,x=b(a≠b)對稱(chēng),則函數y=f(x)是周期為2 的周期函數;

  (6)y=f(x)對x∈R時(shí),f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數;

  5.方程k=f(x)有解 k∈D(D為f(x)的值域);

  a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

  (1) (a>0,a≠1,b>0,n∈R+);

  (2) l og a N= ( a>0,a≠1,b>0,b≠1);

  (3) l og a b的符號由口訣“同正異負”記憶;

  (4) a log a N= N ( a>0,a≠1,N>0 );

  6. 判斷對應是否為映射時(shí),抓住兩點(diǎn):

  (1)A中元素必須都有象且唯一;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  7. 能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

  8.對于反函數,應掌握以下一些結論:

  (1)定義域上的單調函數必有反函數;

  (2)奇函數的反函數也是奇函數;

  (3)定義域為非單元素集的偶函數不存在反函數;

  (4)周期函數不存在反函數;

  (5)互為反函數的兩個(gè)函數具有相同的單調性;

  (6) y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

  9.處理二次函數的問(wèn)題勿忘數形結合

  二次函數在閉區間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對稱(chēng)軸與所給區間的相對位置關(guān)系;

  10 依據單調性

  利用一次函數在區間上的保號性可解決求一類(lèi)參數的范圍問(wèn)題;

  11 恒成立問(wèn)題的處理方法:

  (1)分離參數法;

  (2)轉化為一元二次方程的根的分布列不等式(組)求解;

  練習題:

  1. (-3,4)關(guān)于x軸對稱(chēng)的點(diǎn)的坐標為_(kāi)________,關(guān)于y軸對稱(chēng)的點(diǎn)的坐標為_(kāi)_________,

  關(guān)于原點(diǎn)對稱(chēng)的坐標為_(kāi)_________.

  2. 點(diǎn)B(-5,-2)到x軸的距離是____,到y軸的距離是____,到原點(diǎn)的距離是____

  3. 以點(diǎn)(3,0)為圓心,半徑為5的圓與x軸交點(diǎn)坐標為_(kāi)________________,

  與y軸交點(diǎn)坐標為_(kāi)_______________

  4. 點(diǎn)P(a-3,5-a)在第一象限內,則a的取值范圍是____________

  5. 小華用500元去購買(mǎi)單價(jià)為3元的一種商品,剩余的錢(qián)y(元)與購買(mǎi)這種商品的件數x(件)

  之間的函數關(guān)系是______________,x的取值范圍是__________

  6. 函數y= 的自變量x的取值范圍是________

  7. 當a=____時(shí),函數y=x 是正比例函數

  8. 函數y=-2x+4的圖象經(jīng)過(guò)___________象限,它與兩坐標軸圍成的三角形面積為_(kāi)________,

  周長(cháng)為_(kāi)______

  9. 一次函數y=kx+b的圖象經(jīng)過(guò)點(diǎn)(1,5),交y軸于3,則k=____,b=____

  10.若點(diǎn)(m,m+3)在函數y=- x+2的圖象上,則m=____

  11. y與3x成正比例,當x=8時(shí),y=-12,則y與x的函數解析式為_(kāi)__________

  12.函數y=- x的圖象是一條過(guò)原點(diǎn)及(2,___ )的直線(xiàn),這條直線(xiàn)經(jīng)過(guò)第_____象限,

  當x增大時(shí),y隨之________

  13.函數y=2x-4,當x_______,y0,b0,b>0; C、k

  高一數學(xué)函數知識總結 1

  I、定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關(guān)系:

  y=ax^2+bx+c

  (a,b,c為常數,a≠0,且a決定函數的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大、)

  則稱(chēng)y為x的二次函數。

  二次函數表達式的右邊通常為二次三項式。

  II、二次函數的三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

  頂點(diǎn)式:y=a(x-h)^2+k[拋物線(xiàn)的頂點(diǎn)P(h,k)]

  交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線(xiàn)]

  注:在3種形式的互相轉化中,有如下關(guān)系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

  III、二次函數的圖像

  在平面直角坐標系中作出二次函數y=x^2的圖像,

  可以看出,二次函數的圖像是一條拋物線(xiàn)。

  IV、拋物線(xiàn)的性質(zhì)

  1、拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)

  x=-b/2a。

  對稱(chēng)軸與拋物線(xiàn)的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。

  特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)

  2、拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標為

  P(-b/2a,(4ac-b^2)/4a)

  當-b/2a=0時(shí),P在y軸上;當Δ=b^2-4ac=0時(shí),P在x軸上。

  3、二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。

  當a>0時(shí),拋物線(xiàn)向上開(kāi)口;當a<0時(shí),拋物線(xiàn)向下開(kāi)口。

  |a|越大,則拋物線(xiàn)的開(kāi)口越小。

  4、一次項系數b和二次項系數a共同決定對稱(chēng)軸的位置。

  當a與b同號時(shí)(即ab>0),對稱(chēng)軸在y軸左;

  當a與b異號時(shí)(即ab<0),對稱(chēng)軸在y軸右。

  5、常數項c決定拋物線(xiàn)與y軸交點(diǎn)。

  拋物線(xiàn)與y軸交于(0,c)

  6、拋物線(xiàn)與x軸交點(diǎn)個(gè)數

  Δ=b^2-4ac>0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。

  Δ=b^2-4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。

  Δ=b^2-4ac<0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。X的取值是虛數(x=-b±√b^2-4ac的值的相反數,乘上虛數i,整個(gè)式子除以2a)

  高一數學(xué)函數知識總結 6

  1、函數:設A、B為非空集合,如果按照某個(gè)特定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數,寫(xiě)作y=f(x),x∈A,其中,x叫做自變量,x的取值范圍A叫做函數的定義域,與x相對應的y的值叫做函數值,函數值的集合B={f(x)∣x∈A }叫做函數的值域。

  2、函數定義域的解題思路:

 、湃魓處于分母位置,則分母x不能為0。

 、婆即畏礁谋婚_(kāi)方數不小于0。

 、菍凳降恼鏀当仨毚笥0。

 、戎笖祵凳降牡,不得為1,且必須大于0。

 、芍笖禐0時(shí),底數不得為0。

 、嗜绻瘮凳怯梢恍┗竞瘮低ㄟ^(guò)四則運算結合而成的,那么,它的定義域是各個(gè)部分都有意義的x值組成的集合。

 、藢(shí)際問(wèn)題中的函數的定義域還要保證實(shí)際問(wèn)題有意義。

  3、相同函數

 、疟磉_式相同:與表示自變量和函數值的字母無(wú)關(guān)。

 、贫x域一致,對應法則一致。

  4、函數值域的求法

 、庞^(guān)察法:適用于初等函數及一些簡(jiǎn)單的由初等函數通過(guò)四則運算得到的函數。

 、茍D像法:適用于易于畫(huà)出函數圖像的函數已經(jīng)分段函數。

 、桥浞椒ǎ褐饕糜诙魏瘮,配方成y=(x-a)2+b的形式。

 、却鷵Q法:主要用于由已知值域的函數推測未知函數的值域。

  5、函數圖像的變換

 、牌揭谱儞Q:在x軸上的變換在x上就行加減,在y軸上的變換在y上進(jìn)行加減。

 、粕炜s變換:在x前加上系數。

 、菍ΨQ(chēng)變換:高中階段不作要求。

  6、映射:設A、B是兩個(gè)非空集合,如果按某一個(gè)確定的對應法則f,使對于A(yíng)中的任意儀的元素x,在集合B中都有唯一的確定的y與之對應,那么就稱(chēng)對應f:A→B為從集合A到集合B的映射。

 、偶螦中的每一個(gè)元素,在集合B中都有象,并且象是唯一的。

 、萍螦中的不同元素,在集合B中對應的象可以是同一個(gè)。

 、遣灰蠹螧中的每一個(gè)元素在集合A中都有原象。

  7、分段函數

 、旁诙x域的不同部分上有不同的解析式表達式。

 、聘鞑糠肿宰兞亢秃瘮抵档娜≈捣秶煌。

 、欠侄魏瘮档亩x域是各段定義域的交集,值域是各段值域的并集。

  8、復合函數:如果(u∈M),u=g(x) (x∈A),則,y=f[g(x)]=F(x) (x∈A),稱(chēng)為f、g的復合函數。

  高一數學(xué)函數知識總結 7

  空間兩條直線(xiàn)只有三種位置關(guān)系:平行、相交、異面

  1、按是否共面可分為兩類(lèi):

  (1)共面:平行、相交

  (2)異面:

  異面直線(xiàn)的定義:不同在任何一個(gè)平面內的兩條直線(xiàn)或既不平行也不相交。

  異面直線(xiàn)判定定理:用平面內一點(diǎn)與平面外一點(diǎn)的直線(xiàn),與平面內不經(jīng)過(guò)該點(diǎn)的直線(xiàn)是異面直線(xiàn)。

  兩異面直線(xiàn)所成的角:范圍為(0°,90°)

  esp.空間向量法

  兩異面直線(xiàn)間距離:公垂線(xiàn)段(有且只有一條)

  esp.空間向量法

  2、若從有無(wú)公共點(diǎn)的角度看可分為兩類(lèi):

  (1)有且僅有一個(gè)公共點(diǎn)——相交直線(xiàn);(2)沒(méi)有公共點(diǎn)——平行或異面

  高一數學(xué)直線(xiàn)和平面的位置關(guān)系

  直線(xiàn)和平面只有三種位置關(guān)系:在平面內、與平面相交、與平面平行

 、僦本(xiàn)在平面內——有無(wú)數個(gè)公共點(diǎn)

 、谥本(xiàn)和平面相交——有且只有一個(gè)公共點(diǎn)

  直線(xiàn)與平面所成的角:平面的一條斜線(xiàn)和它在這個(gè)平面內的射影所成的銳角。

  空間向量法(找平面的法向量)

  規定:

  a、直線(xiàn)與平面垂直時(shí),所成的角為直角,

  b、直線(xiàn)與平面平行或在平面內,所成的角為0°角

  由此得直線(xiàn)和平面所成角的取值范圍為[0°,90°]

  最小角定理:斜線(xiàn)與平面所成的角是斜線(xiàn)與該平面內任一條直線(xiàn)所成角中的最小角

  三垂線(xiàn)定理及逆定理:如果平面內的一條直線(xiàn),與這個(gè)平面的一條斜線(xiàn)的射影垂直,那么它也與這條斜線(xiàn)垂直

  直線(xiàn)和平面垂直

  直線(xiàn)和平面垂直的定義:如果一條直線(xiàn)a和一個(gè)平面內的任意一條直線(xiàn)都垂直,我們就說(shuō)直線(xiàn)a和平面互相垂直.直線(xiàn)a叫做平面的垂線(xiàn),平面叫做直線(xiàn)a的垂面。

  直線(xiàn)與平面垂直的判定定理:如果一條直線(xiàn)和一個(gè)平面內的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直于這個(gè)平面。

  直線(xiàn)與平面垂直的性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。③直線(xiàn)和平面平行——沒(méi)有公共點(diǎn)

  直線(xiàn)和平面平行的定義:如果一條直線(xiàn)和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線(xiàn)和這個(gè)平面平行。

  直線(xiàn)和平面平行的判定定理:如果平面外一條直線(xiàn)和這個(gè)平面內的一條直線(xiàn)平行,那么這條直線(xiàn)和這個(gè)平面平行。

  直線(xiàn)和平面平行的性質(zhì)定理:如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,那么這條直線(xiàn)和交線(xiàn)平行。

  (1)有且僅有一個(gè)公共點(diǎn)——相交直線(xiàn);

  (2)沒(méi)有公共點(diǎn)——平行或異面

  高一數學(xué)函數知識總結 8

  一、增函數和減函數

  一般地,設函數f(x)的定義域為I:

  如果對于屬于I內某個(gè)區間上的任意兩個(gè)自變量的值x1、x2,當x1<x2時(shí)都有f(x1)<f(x2).那么就說(shuō)f(x)在 這個(gè)區間上是增函數。

  如果對于屬于I內某個(gè)區間上的任意兩個(gè)自變量的值x1、x2,當x1<x2時(shí)都有f(x1)>f(x2).那么就是f(x)在這個(gè)區間上是減函數。

  二、單調區間

  單調區間是指函數在某一區間內的函數值Y,隨自變量X增大而增大(或減。┖愠闪。如果函數y=f(x)在某個(gè)區間是增函數或減函數。那么就說(shuō)函數y=f(x)在這一區間具有(嚴格的)單調性,這一區間叫做y= f(x)的單調區間。

  一、指數函數的`定義

  指數函數的一般形式為y=a^x(a0且≠1) (x∈R).

  二、指數函數的性質(zhì)

  1.曲線(xiàn)沿x軸方向向左無(wú)限延展〈=〉函數的定義域為(-∞,+∞)

  2.曲線(xiàn)在x軸上方,而且向左或向右隨著(zhù)x值的減小或增大無(wú)限靠近X軸(x軸是曲線(xiàn)的漸近線(xiàn))〈=〉函數的值域為(0,+∞)

  一、對數與對數函數定義

  1.對數:一般地,如果a(a大于0,且a不等于1)的b次冪等于N,那么數b叫做以a為底N的對數,記作log aN=b,讀作以a為底N的對數,其中a叫做對數的底數,N叫做真數。

  2.對數函數:一般地,函數y=log(a)X,(其中a是常數,a0且a不等于1)叫做對數函數,它實(shí)際上就是指數函數的反函數,因此指數函數里對于a的規定,同樣適用于對數函數。

  二、方法點(diǎn)撥

  在解決函數的綜合性問(wèn)題時(shí),要根據題目的具體情況把問(wèn)題分解為若干小問(wèn)題一次解決,然后再整合解決的結果,這也是分類(lèi)與整合思想的一個(gè)重要方面。

  一、冪函數定義

  形如y=x^a(a為常數)的函數,即以底數為自變量 冪為因變量,指數為常量的函數稱(chēng)為冪函數。

  二、性質(zhì)

  冪函數不經(jīng)過(guò)第三象限,如果該函數的指數的分子n是偶數,而分母m是任意整數,則y0,圖像在第一;二象限.這時(shí)(-1)^p的指數p的奇偶性無(wú)關(guān).

  如果函數的指數的分母m是偶數,而分子n是任意整數,則x0(或xy0(或y=0),圖像在第一象限.與p的奇偶性關(guān)系不大,

  高一數學(xué)函數知識總結 9

  考點(diǎn)一映射的概念

  1.了解對應大千世界的對應共分四類(lèi),分別是:一對一多對一一對多多對多

  2.映射:設A和B是兩個(gè)非空集合,如果按照某種對應關(guān)系f,對于集合A中的任意一個(gè)元素x,在集合B中都存在唯一的一個(gè)元素y與之對應,那么,就稱(chēng)對應f:A→B為集合A到集合B的一個(gè)映射(mapping).映射是特殊的對應,簡(jiǎn)稱(chēng)“對一”的對應。包括:一對一多對一

  考點(diǎn)二函數的概念

  1.函數:設A和B是兩個(gè)非空的數集,如果按照某種確定的對應關(guān)系f,對于集合A中的任意一個(gè)數x,在集合B中都存在唯一確定的數y與之對應,那么,就稱(chēng)對應f:A→B為集合A到集合B的一個(gè)函數。記作y=f(x),xA.其中x叫自變量,x的取值范圍A叫函數的定義域;與x的值相對應的y的值函數值,函數值的集合叫做函數的值域。函數是特殊的映射,是非空數集A到非空數集B的映射。

  2.函數的三要素:定義域、值域、對應關(guān)系。這是判斷兩個(gè)函數是否為同一函數的依據。

  3.區間的概念:設a,bR,且a

 、(a,b)={xa

 、(a,+∞)={xx>a}⑥[a,+∞)={xx≥a}⑦(-∞,b)={xx

  考點(diǎn)三函數的表示方法

  1.函數的三種表示方法列表法圖象法解析法

  2.分段函數:定義域的不同部分,有不同的對應法則的函數。注意兩點(diǎn):①分段函數是一個(gè)函數,不要誤認為是幾個(gè)函數。②分段函數的定義域是各段定義域的并集,值域是各段值域的并集。

  能力知識清單

  考點(diǎn)一求定義域的幾種情況

 、偃鬴(x)是整式,則函數的定義域是實(shí)數集R;

 、谌鬴(x)是分式,則函數的定義域是使分母不等于0的實(shí)數集;

 、廴鬴(x)是二次根式,則函數的定義域是使根號內的式子大于或等于0的實(shí)數集合;

 、苋鬴(x)是對數函數,真數應大于零。

 、.因為零的零次冪沒(méi)有意義,所以底數和指數不能同時(shí)為零。

 、奕鬴(x)是由幾個(gè)部分的數學(xué)式子構成的,則函數的定義域是使各部分式子都有意義的實(shí)數集合;

 、呷鬴(x)是由實(shí)際問(wèn)題抽象出來(lái)的函數,則函數的定義域應符合實(shí)際問(wèn)題

【高一數學(xué)函數知識總結】相關(guān)文章:

高一數學(xué)函數知識總結11-22

高一數學(xué)函數知識總結6篇11-22

高一數學(xué)函數知識總結(6篇)11-22

高一數學(xué)函數知識點(diǎn)總結12-01

高一數學(xué)函數圖像知識點(diǎn)總結06-26

高一數學(xué)冪函數知識點(diǎn)總結07-03

總結高一數學(xué)函數的知識點(diǎn)大全06-25

高一數學(xué)函數與方程知識點(diǎn)總結06-25

高一數學(xué)集合與函數概念知識點(diǎn)總結06-25

99久久精品免费看国产一区二区三区|baoyu135国产精品t|40分钟97精品国产最大网站|久久综合丝袜日本网|欧美videosdesexo肥婆