高三數學(xué)數列知識點(diǎn)總結

時(shí)間:2023-12-26 10:52:18 芊喜 總結范文 我要投稿

高三數學(xué)數列知識點(diǎn)總結

  在我們的學(xué)習時(shí)代,是不是聽(tīng)到知識點(diǎn),就立刻清醒了?知識點(diǎn)就是“讓別人看完能理解”或者“通過(guò)練習我能掌握”的內容。想要一份整理好的知識點(diǎn)嗎?以下是小編精心整理的高三數學(xué)數列知識點(diǎn)總結,僅供參考,歡迎大家閱讀。

高三數學(xué)數列知識點(diǎn)總結

  高三數學(xué)數列知識點(diǎn)總結

  一、排列組合與二項式定理知識點(diǎn)

  1.計數原理知識點(diǎn)

 、俪朔ㄔ恚篘=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分類(lèi))

  2. 排列(有序)與組合(無(wú)序)

  Anm=n(n-1)(n-2)(n-3)…(n-m+1)=n!/(n-m)! Ann =n!

  Cnm = n!/(n-m)!m!

  Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k?k!=(k+1)!-k!

  3.排列組合混合題的解題原則:先選后排,先分再排

  排列組合題的主要解題方法:優(yōu)先法:以元素為主,應先滿(mǎn)足特殊元素的要求,再考慮其他元素. 以位置為主考慮,即先滿(mǎn)足特殊位置的要求,再考慮其他位置.

  捆綁法(集團元素法,把某些必須在一起的元素視為一個(gè)整體考慮)

  插空法(解決相間問(wèn)題) 間接法和去雜法等等

  在求解排列與組合應用問(wèn)題時(shí),應注意:

  (1)把具體問(wèn)題轉化或歸結為排列或組合問(wèn)題;

  (2)通過(guò)分析確定運用分類(lèi)計數原理還是分步計數原理;

  (3)分析題目條件,避免“選取”時(shí)重復和遺漏;

  (4)列出式子計算和作答.

  經(jīng)常運用的數學(xué)思想是:

 、俜诸(lèi)討論思想;②轉化思想;③對稱(chēng)思想.

  4.二項式定理知識點(diǎn):

 、(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+…+ Cn n-1abn-1+ Cnnbn

  特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

 、谥饕再|(zhì)和主要結論:對稱(chēng)性Cnm=Cnn-m

  最大二項式系數在中間。(要注意n為奇數還是偶數,答案是中間一項還是中間兩項)

  所有二項式系數的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n

  奇數項二項式系數的和=偶數項而是系數的和

  Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn9+…=2n -1

 、弁棡榈趓+1項: Tr+1= Cnran-rbr 作用:處理與指定項、特定項、常數項、有理項等有關(guān)問(wèn)題。

  5.二項式定理的應用:解決有關(guān)近似計算、整除問(wèn)題,運用二項展開(kāi)式定理并且結合放縮法證明與指數有關(guān)的不等式。

  6.注意二項式系數與項的系數(字母項的系數,指定項的系數等,指運算結果的系數)的區別,在求某幾項的系數的和時(shí)注意賦值法的應用。

  二、高中數學(xué)中有關(guān)等差、等比數列的結論

  1、等差數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等差數列。

  2、等差數列{an}中,若m+n=p+q,則 am+an=ap+aq

  3、等比數列{an}中,若m+n=p+q,則am·an=ap·aq

  4、等比數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等比數列。

  5、兩個(gè)等差數列{an}與{bn}的和差的數列{an+bn}、{an-bn}仍為等差數列。

  6、兩個(gè)等比數列{an}與{bn}的積、商、倒數組成的數列

  7、等差數列{an}的任意等距離的項構成的數列仍為等差數列。

  8、等比數列{an}的任意等距離的項構成的數列仍為等比數列。

  9、三個(gè)數成等差數列的設法:a-d,a,a+d;四個(gè)數成等差的設法:a-3d,a-d,,a+d,a+3d

  10、三個(gè)數成等比數列的設法:a/q,a,aq;

  三、數列基本公式:

  1、一般數列的通項an與前n項和Sn的關(guān)系:an= S1(n-1)或Sn-Sn-1(n>2或n=2)

  2、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時(shí),an是關(guān)于n的一次式;當d=0時(shí),an是一個(gè)常數。

  3、等差數列的前n項和公式:Sn=na1+[n(n-1)/2]d

  Sn=n(a1+a2)/2

  Sn=nan-[n(n-1)/2]d

  當d≠0時(shí),Sn是關(guān)于n的二次式且常數項為0;當d=0時(shí)(a1≠0),Sn=na1是關(guān)于n的正比例式。

  4、等比數列的通項公式: an= a1 qn-1 an= ak qn-k(其中a1為首項、ak為已知的第k項,an≠0)

  5、等比數列的前n項和公式:當q=1時(shí),Sn=n a1 (是關(guān)于n的正比例式);

  高三數學(xué)數列知識點(diǎn)總結

  等比數列公式性質(zhì)知識點(diǎn)

  1.等比數列的有關(guān)概念

  (1)定義:

  如果一個(gè)數列從第2項起,每一項與它的前一項的比等于同一個(gè)常數(不為零),那么這個(gè)數列就叫做等比數列.這個(gè)常數叫做等比數列的公比,通常用字母q表示,定義的表達式為an+1/an=q(n∈N_,q為非零常數).

  (2)等比中項:

  如果a、G、b成等比數列,那么G叫做a與b的等比中項.即:G是a與b的等比中項a,G,b成等比數列G2=ab.

  2.等比數列的有關(guān)公式

  (1)通項公式:an=a1qn-1.

  3.等比數列{an}的常用性質(zhì)

  (1)在等比數列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),則am·an=ap·aq=a.

  特別地,a1an=a2an-1=a3an-2=….

  (2)在公比為q的等比數列{an}中,數列am,am+k,am+2k,am+3k,…仍是等比數列,公比為qk;數列Sm,S2m-Sm,S3m-S2m,…仍是等比數列(此時(shí)q≠-1);an=amqn-m.

  4.等比數列的特征

  (1)從等比數列的定義看,等比數列的任意項都是非零的,公比q也是非零常數.

  (2)由an+1=qan,q≠0并不能立即斷言{an}為等比數列,還要驗證a1≠0.

  5.等比數列的前n項和Sn

  (1)等比數列的前n項和Sn是用錯位相減法求得的,注意這種思想方法在數列求和中的運用.

  (2)在運用等比數列的前n項和公式時(shí),必須注意對q=1與q≠1分類(lèi)討論,防止因忽略q=1這一特殊情形導致解題失誤.

  等比數列知識點(diǎn)

  1.等比中項

  如果在a與b中間插入一個(gè)數G,使a,G,b成等比數列,那么G叫做a與b的等比中項。

  有關(guān)系:

  注:兩個(gè)非零同號的實(shí)數的等比中項有兩個(gè),它們互為相反數,所以G2=ab是a,G,b三數成等比數列的必要不充分條件。

  2.等比數列通項公式

  an=a1_q’(n-1)(其中首項是a1,公比是q)

  an=Sn-S(n-1)(n≥2)

  前n項和

  當q≠1時(shí),等比數列的前n項和的公式為

  Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)

  當q=1時(shí),等比數列的前n項和的公式為

  Sn=na1

  3.等比數列前n項和與通項的關(guān)系

  an=a1=s1(n=1)

  an=sn-s(n-1)(n≥2)

  4.等比數列性質(zhì)

  (1)若m、n、p、q∈N_,且m+n=p+q,則am·an=ap·aq;

  (2)在等比數列中,依次每k項之和仍成等比數列。

  (3)從等比數列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

  (4)等比中項:q、r、p成等比數列,則aq·ap=ar2,ar則為ap,aq等比中項。

  記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  另外,一個(gè)各項均為正數的等比數列各項取同底指數冪后構成一個(gè)等差數列;反之,以任一個(gè)正數C為底,用一個(gè)等差數列的各項做指數構造冪Can,則是等比數列。在這個(gè)意義下,我們說(shuō):一個(gè)正項等比數列與等差數列是“同構”的。

  (5)等比數列前n項之和Sn=a1(1-q’n)/(1-q)

  (6)任意兩項am,an的關(guān)系為an=am·q’(n-m)

  (7)在等比數列中,首項a1與公比q都不為零。

  注意:上述公式中a’n表示a的n次方。

  等比數列知識點(diǎn)總結

  等比數列:如果一個(gè)數列從第2項起,每一項與它的前一項的比等于同一個(gè)常數,這個(gè)數列就叫做等比數列。這個(gè)常數叫做等比數列的公比,公比通常用字母q表示(q≠0)。

  1:等比數列通項公式:an=a1_q^(n-1);推廣式:an=am·q^(n-m);

  2:等比數列求和公式:等比求和:Sn=a1+a2+a3+.......+an

 、佼攓≠1時(shí),Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)

 、诋攓=1時(shí),Sn=n×a1(q=1)記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  3:等比中項:aq·ap=ar^2,ar則為ap,aq等比中項。

  4:性質(zhì):

 、偃鬽、n、p、q∈N,且m+n=p+q,則am·an=ap_aq;

 、谠诘缺葦盗兄,依次每k項之和仍成等比數列.

  例題:設ak,al,am,an是等比數列中的第k、l、m、n項,若k+l=m+n,求證:ak_al=am_an

  證明:設等比數列的首項為a1,公比為q,則ak=a1·q^(k-1),al=a1·q^(l-1),am=a1·q^(m-1),an=a1·q^(n-1)

  所以:ak_al=a^2_q^(k+l-2),am_an=a^2_q(m+n-2),故:ak_al=am_an

  說(shuō)明:這個(gè)例題是等比數列的一個(gè)重要性質(zhì),它在解題中常常會(huì )用到。它說(shuō)明等比數列中距離兩端(首末兩項)距離等遠的兩項的乘積等于首末兩項的乘積,即:a(1+k)·a(n-k)=a1·an

  對于等差數列,同樣有:在等差數列中,距離兩端等這的兩項之和等于首末兩項之和。即:a(1+k)+a(n-k)=a1+an

【高三數學(xué)數列知識點(diǎn)總結】相關(guān)文章:

關(guān)于初中數學(xué)數列的概念知識點(diǎn)總結06-24

初中數學(xué)數列的表示知識點(diǎn)總結的內容06-24

高三數學(xué)《等差數列的前n項和》知識點(diǎn)總結06-24

必修數學(xué)求數列通項公式知識點(diǎn)總結06-26

等差數列知識點(diǎn)總結04-18

高三數學(xué)知識點(diǎn)總結09-21

高三數學(xué)重要知識點(diǎn)總結07-05

高三數學(xué)知識點(diǎn)總結06-22

高三數學(xué)復習知識點(diǎn)總結12-08

99久久精品免费看国产一区二区三区|baoyu135国产精品t|40分钟97精品国产最大网站|久久综合丝袜日本网|欧美videosdesexo肥婆