三角形內角和教學(xué)設計集合15篇
作為一位杰出的教職工,常常需要準備教學(xué)設計,教學(xué)設計以計劃和布局安排的形式,對怎樣才能達到教學(xué)目標進(jìn)行創(chuàng )造性的決策,以解決怎樣教的問(wèn)題。那么問(wèn)題來(lái)了,教學(xué)設計應該怎么寫(xiě)?下面是小編整理的三角形內角和教學(xué)設計,歡迎大家借鑒與參考,希望對大家有所幫助。
三角形內角和教學(xué)設計1
設計思路
遵循由特殊到一般的規律進(jìn)行探究活動(dòng)是這節課設計的主要特點(diǎn)之一。學(xué)生對三角尺上每個(gè)角的度數比較熟悉,就從這里入手。先讓學(xué)生算出每塊三角尺三個(gè)內角的和是180°,引發(fā)學(xué)生的猜想:其它三角形的內角和也是180°嗎?接著(zhù),引導學(xué)生小組合作,任意畫(huà)出不同類(lèi)型的三角形,用通過(guò)量一量、算一算,得出三角形的內角和是180°或接近180°(測量誤差),再引導學(xué)生通過(guò)剪拼的方法發(fā)現:各類(lèi)三角形的三個(gè)內角都可以拼成一個(gè)平角。再利用課件演示進(jìn)一步驗證,由此獲得三角形的內角和是180°的結論。這一系列活動(dòng)潛移默化地向學(xué)生滲透了“轉化”數學(xué)思想,為后繼學(xué)習奠定了必要的基礎。
最后讓學(xué)生運用結論解決實(shí)際問(wèn)題,練習的安排上,注意練習層次,共安排三個(gè)層次,逐步加深。練習形式具有趣味性,激發(fā)了學(xué)生主動(dòng)解題的積極性。第一個(gè)練習從知識的直接應用到間接應用,數學(xué)信息的出現從比較顯現到較為隱藏。這些題檢測不同層次的學(xué)生是否掌握所學(xué)知識應該達到的基本要求,顧及到智力水平發(fā)展較慢和中等的同學(xué),第3個(gè)練習設計了開(kāi)放性的練習,在小組內完成。由一個(gè)同學(xué)出題,其它三個(gè)同學(xué)回答。先給出三角形兩個(gè)內角的.度數,說(shuō)出另外一個(gè)內角。有唯一的答案。訓練多次后,只給出三角形一個(gè)內角,說(shuō)出其它兩個(gè)內角,答案不唯一,可以得出無(wú)數個(gè)答案。讓學(xué)生在游戲中消除疲倦激發(fā)興趣,拓展學(xué)生思維。兼顧到智力水平發(fā)展較快的同學(xué)。在整個(gè)教學(xué)設計中,本著(zhù)“學(xué)貴在思,思源于疑”的思想,不斷創(chuàng )設問(wèn)題情境,讓學(xué)生去實(shí)驗、去發(fā)現新知識的奧妙,從而讓學(xué)生在動(dòng)手操作、積極探索的活動(dòng)中掌握知識,積累數學(xué)活動(dòng)經(jīng)驗,發(fā)展空間觀(guān)念和推理能力。
教學(xué)目標
1、讓學(xué)生親自動(dòng)手,通過(guò)量、剪、拼等活動(dòng)發(fā)現、證實(shí)三角形內角和是180°,并會(huì )應用這一知識解決生活中簡(jiǎn)單的實(shí)際問(wèn)題。
2、讓學(xué)生在動(dòng)手獲取知識的過(guò)程中,培養學(xué)生的創(chuàng )新意識、探索精神和實(shí)踐能力。并通過(guò)動(dòng)手操作把三角形內角和轉化為平角的探究活動(dòng),向學(xué)生滲透“轉化”數學(xué)思想。
3、使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動(dòng)學(xué)習數學(xué)的興趣。
教材分析
三角形的內角和是三角形的一個(gè)重要特征。本課是安排在學(xué)習三角形的概念及分類(lèi)之后進(jìn)行的,它是學(xué)生以后學(xué)習多邊形的內角和及解決其它實(shí)際問(wèn)題的基礎。學(xué)生在掌握知識方面:已經(jīng)掌握了三角形的分類(lèi),比較熟悉平角等有關(guān)知識;能力方面:經(jīng)過(guò)三年多的學(xué)習,已具備了初步的動(dòng)手操作能力和主動(dòng)探究能力以及合作學(xué)習的習慣。
因此,教材很重視知識的探索與發(fā)現,安排了一系列的實(shí)驗操作活動(dòng)。教材呈現教學(xué)內容時(shí),不但重視體現知識的形成過(guò)程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒(méi)有直接給出結論,而是通過(guò)量、算、拼等活動(dòng),讓學(xué)生探索、實(shí)驗、發(fā)現、討論交流、推理歸納出三角形的內角和是180°。
教學(xué)重點(diǎn)
讓學(xué)生經(jīng)歷“三角形內角和是180°”這一知識的形成、發(fā)展和應用的全過(guò)程。
教學(xué)準備
多媒體課件、學(xué)具。
教學(xué)過(guò)程
一、激趣引入
。ㄒ唬┱J識三角形內角
師:我們已經(jīng)認識了什么是三角形,誰(shuí)能說(shuō)出三角形有什么特點(diǎn)?
生1:三角形是由三條線(xiàn)段圍成的圖形。
生2:三角形有三個(gè)角,……
師:請看屏幕(課件演示三條線(xiàn)段圍成三角形的過(guò)程)。
師:三條線(xiàn)段圍成三角形后,在三角形內形成了三個(gè)角,(課件分別閃爍三個(gè)角及的弧線(xiàn)),我們把三角形里面的這三個(gè)角分別叫做三角形的內角。(這里,有必要向學(xué)生直觀(guān)介紹“內角”。)
。ǘ┰O疑,激發(fā)學(xué)生探究新知的心理
師:請同學(xué)們幫老師畫(huà)一個(gè)三角形,能做到嗎?(激發(fā)學(xué)生主動(dòng)學(xué)習的心理)
生:能。
師:請聽(tīng)要求,畫(huà)一個(gè)有兩個(gè)內角是直角的三角形,開(kāi)始。(設置矛盾,使學(xué)生在矛盾中去發(fā)現問(wèn)題、探究問(wèn)題。)
師:有誰(shuí)畫(huà)出來(lái)啦?
生1:不能畫(huà)。
生2:只能畫(huà)兩個(gè)直角。
生3:只能畫(huà)長(cháng)方形。
師(課件演示):是不是畫(huà)成這個(gè)樣子了?哦,只能畫(huà)兩個(gè)直角。
師:?jiǎn)?wèn)題出現在哪兒呢?這一定有什么奧秘?想不想知道?
生:想。
師:那就讓我們一起來(lái)研究吧!
。ń沂久,巧妙引入新知的探究)
二、動(dòng)手操作,探究新知
。ㄒ唬┭芯刻厥馊切蔚膬冉呛
師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個(gè)角的度數。(課件閃動(dòng)其中的一塊三角板)
生:90°、60°、30°。(課件演示:由三角板抽象出三角形)
師:也就是這個(gè)三角形各角的度數。它們的和怎樣?
生:是180°。
師:你是怎樣知道的?
生:90°+60°+30°=180°。
師:對,把三角形三個(gè)內角的度數合起來(lái)就叫三角形的內角和。
師:(課件演示另一塊三角板的各角的度數。)這個(gè)呢?它的內角和是多少度呢?
生:90°+45°+45°=180°。
師:從剛才兩個(gè)三角形內角和的計算中,你發(fā)現什么?
生1:這兩個(gè)三角形的內角和都是180°。
生2:這兩個(gè)三角形都是直角三角形,并且是特殊的三角形。
。ǘ┭芯恳话闳切蝺冉呛
1、猜一猜。
師:猜一猜其它三角形的內角和是多少度呢?同桌互相說(shuō)說(shuō)自己的看法。
生1:180°。
生2:不一定。
……
2、操作、驗證一般三角形內角和是180°。
。1)小組合作、進(jìn)行探究。
師:所有三角形的內角和究竟是不是180°,你能用什么辦法來(lái)證明,使別人相信呢?
生:可以先量出每個(gè)內角的度數,再加起來(lái)。
師:哦,也就是測量計算,是嗎?那就請四人小組共同研究吧!
師:每個(gè)小組都有不同類(lèi)型的三角形。每種類(lèi)型的三角形都需要驗證,先討論一下,怎樣才能很快完成這個(gè)任務(wù)。(課前每個(gè)小組都發(fā)有銳角三角形、直角三角形、鈍角三角形,指導學(xué)生選擇解決問(wèn)題的策略,進(jìn)行合理分工,提高效率。)
。2)小組匯報結果。
師:請各小組匯報探究結果。
生1:180°。
生2:175°。
生3:182°。
(三)繼續探究
師:沒(méi)有得到統一的結果。這個(gè)辦法不能使人很信服,怎么辦?還有其它辦法嗎?
生1:有。
生2:用拼合的辦法,就是把三角形的三個(gè)內角放在一起,可以拼成一個(gè)平角。
師:怎樣才能把三個(gè)內角放在一起呢?
生:把它們剪下來(lái)放在一起。
1、用拼合的方法驗證。
師:很好,請用不同的三角形來(lái)驗證。
師:小組內完成,仍然先分工怎樣才能很快完成任務(wù),開(kāi)始吧。
2、匯報驗證結果。
師:先驗證銳角三角形,我們得出什么結論?
生1:銳角三角形的內角拼在一起是一個(gè)平角,所以銳角三角形的內角和是180°。
生2:直角三角形的內角和也是180°。
生3:鈍角三角形的內角和還是180°。
3、課件演示驗證結果。
師:請看屏幕,老師也來(lái)驗證一下,是不是跟你們得到的結果一樣?(播放課件)
師:我們可以得出一個(gè)怎樣的結論?
生:三角形的內角和是180°。
。ń處煱鍟(shū):三角形的內角和是180°學(xué)生齊讀一遍。)
師:為什么用測量計算的方法不能得到統一的結果呢?
生1:量的不準。
生2:有的量角器有誤差。
師:對,這就是測量的誤差。
三角形內角和教學(xué)設計2
一、教學(xué)目標
1.知識目標:通過(guò)測量、撕拼(剪拼)、折疊等方法,探索和發(fā)現三角形三個(gè)內角的度數和等于180°這一規律,并能實(shí)際應用。
2.能力目標:培養學(xué)生主動(dòng)探索、動(dòng)手操作的能力。使學(xué)生養成良好的合作習慣。
3.情感目標:讓學(xué)生體會(huì )幾何圖形內在的結構美。并充分體會(huì )到學(xué)習數學(xué)的快樂(lè )。
二、教學(xué)過(guò)程
。ㄒ唬﹦(chuàng )設情境,導入新課
1、師:我們已經(jīng)認識了三角形,你知道哪些關(guān)于三角形的知識?
。▽W(xué)生暢所欲言。)
2、師:我們在討論三角形知識的時(shí)候,三角形中的三個(gè)好朋友卻吵了起來(lái),想知道是怎么回事嗎?讓我們一起去看看吧!
師口述:一個(gè)大的直角三角形說(shuō):“我的個(gè)頭大,我的內角和一定比你們大!币粋(gè)鈍角三角形說(shuō):“我有一個(gè)鈍角,我的內角和才是最大的)一個(gè)小的銳角三角形很委屈的樣子說(shuō)“是這樣嗎?”,
3、到底誰(shuí)說(shuō)的對呢?今天我們就來(lái)研究有關(guān)三角形內角和的知識。(板書(shū)課題:三角形內角和)
。ǘ┳灾魈骄,發(fā)現規律
1、認識什么是三角形的內角和。
師:你知道什么是三角形的內角和嗎?
通過(guò)學(xué)生討論,得出三角形的內角和就是三角形三個(gè)內角的度數和。
2、探究三角形內角和的特點(diǎn)。
、僮寣W(xué)生想一想、說(shuō)一說(shuō)怎樣才能知道三角形的內角和?
學(xué)生會(huì )想到量一量每個(gè)三角形的內角,再相加的方法來(lái)得到三角形的內角和。(如果學(xué)生想到別的方法,只要合理的,教師就給予肯定,并鼓勵他們對自己想到的方法進(jìn)行)
、谛〗M合作。
通過(guò)小組合作后交流,匯報。(教師同時(shí)板書(shū)出幾個(gè)小組匯報的結果)讓學(xué)生們發(fā)現每個(gè)三角形的內角和都在180°左右。
引導學(xué)生推測出三角形的內角和可能都是180°。
3、驗證推測。
讓學(xué)生動(dòng)腦筋想一想,怎樣才能驗證自己的推想是否正確,學(xué)生可能會(huì )想到用折拼或剪拼的方法來(lái)看一看三角形的三個(gè)角和起來(lái)是不是180°,也就是說(shuō)三角形的三個(gè)角能不能拼成一個(gè)平角。
。ㄐ〗M合作驗證,教師參與其中。)
4、全班交流,共同發(fā)現規律。
當學(xué)生匯報用折拼或剪拼的方法的時(shí)候,指名學(xué)生上黑板展示結果。
學(xué)生交流、師生共同總結出三角形的內角和等于180°。教師同時(shí)板書(shū)(三角形內角和等于180°。)
5、師談話(huà):三個(gè)三角形討論的問(wèn)題現在能解決了嗎?你現在想對這三個(gè)三角形說(shuō)點(diǎn)什么嗎?(讓學(xué)生暢所欲言,對得出的三角形內角和是180°做系統的整理。)
。ㄈ╈柟叹毩,拓展應用
根據發(fā)現的三角形的新知識來(lái)解決問(wèn)題。
1、完成“試一試”
讓學(xué)生獨立完成后,集體交流。
2、游戲:選度數,組三角形。
請選出三個(gè)角的度數來(lái)組成一個(gè)三角形。
150°10°15°18°20°32°
35°50°52°54°56°58°
130°70°72°75°60°
學(xué)生回答的同時(shí),教師操作課件,把學(xué)生選擇的度數拖入方框內,通過(guò)電腦計算相加是否等于180°,來(lái)驗證學(xué)生的選擇是否正確。驗證學(xué)生選的對了以后,再讓學(xué)生判斷選擇的度數所組成的三角形按角的大小分類(lèi),屬于哪種三角形。并說(shuō)出理由。
3、“想想做做”第1題
生獨立完成,集體訂正,并說(shuō)說(shuō)解題方法。
4、“想想做做”第2題
提問(wèn):為什么兩個(gè)三角形拼成一個(gè)三角形后,內角和還是180度?
5、“想想做做”第3題
生動(dòng)手折折看,填空。
提問(wèn):三角形的內角和與三角形的大小有關(guān)系嗎?三角形越大,內角和也越大嗎?
6、“想想做做”第5題
生獨立完成,說(shuō)說(shuō)不同的解題方法。
7、“想想做做”第6題
學(xué)生說(shuō)說(shuō)自己的想法。
8、思考題
教師拿一個(gè)大三角形,提問(wèn)學(xué)生內角和是多少?用剪刀剪成兩個(gè)三角形,提問(wèn)學(xué)生內角和是多少?為什么?再剪下一個(gè)小三角形,提問(wèn)學(xué)生內角和是多少?為什么?最后建成一個(gè)四邊形,提問(wèn)學(xué)生內角和是多少?你能推導
出四邊形的內角和公式嗎?
。ㄋ模┱n堂總結
本節課我們學(xué)習了哪些內容?(生自由說(shuō)),同學(xué)們說(shuō)得真好,我們要勇于從事實(shí)中尋找規律,再將規律運用到實(shí)踐當中去。
三教后反思:
“三角形的內角和”是小學(xué)數學(xué)教材第八冊“認識圖形”這一單元中的一個(gè)內容。通過(guò)鉆研教材,研究學(xué)情和學(xué)法,與同組老師交流,我將本課的教學(xué)目標確定為:
1、通過(guò)測量、撕拼、折疊等方法,探索和發(fā)現三角形三個(gè)內角的度數和等于180度。
2、已知三角形兩個(gè)角的度數,會(huì )求出第三個(gè)角的度數。
本節教學(xué)是在學(xué)生在學(xué)習“認識三角形”的基礎上進(jìn)行的,“三角形內角和等于180度”這一結論學(xué)生早知曉,但為什么三角形內角和會(huì )一樣?這也正是本節課要與學(xué)生共同研究的問(wèn)題。所以我將這節課教學(xué)的重難點(diǎn)設定為:通過(guò)動(dòng)手操作驗證三角形的內角和是180°。教學(xué)方法主要采用了實(shí)驗法和演示法。學(xué)生的折、拼、剪等實(shí)踐活動(dòng),讓學(xué)生找到了自己的驗證方法,使他們體驗了成功,也學(xué)會(huì )了學(xué)習。下面結合自己的教學(xué),談幾點(diǎn)體會(huì )。
。ㄒ唬﹦(chuàng )設情景,激發(fā)興趣
俗話(huà)說(shuō):“良好的開(kāi)端是成功的一半”。一堂課的開(kāi)頭雖然只有短短幾分鐘,但它卻往往影響一堂課的成敗。因此,教師必須根據教學(xué)內容和學(xué)生實(shí)際,精心設計每一節課的開(kāi)頭導語(yǔ),用別出心裁的導語(yǔ)來(lái)激發(fā)學(xué)生的學(xué)習興趣,讓學(xué)生主動(dòng)地投入學(xué)習。本節課先創(chuàng )設畫(huà)角質(zhì)疑的情景,當學(xué)生畫(huà)不出來(lái)含有兩個(gè)直角的三角形時(shí),學(xué)生想說(shuō)為什么又不知怎么說(shuō),學(xué)生探究的興趣因此而油然而生。
。ǘ┙o學(xué)生空間,讓他們自主探究
“給學(xué)生一些權利,讓他們自己選擇;給學(xué)生一個(gè)條件,讓他們自己去鍛煉;給學(xué)生一些問(wèn)題,讓他們自己去探索;給學(xué)生一片空間,讓他們自己飛翔!蔽矣洸磺暹@是誰(shuí)說(shuō)過(guò)的話(huà),但它給我留下深刻的印象。它正是新課改中學(xué)生主體性的表現,是以人為本新理念的體現。所以在本節課中我注重創(chuàng )設有助于學(xué)生自主探究的機會(huì ),通過(guò)“想辦法驗證三角形內角和是180度”這一核心問(wèn)題,引發(fā)學(xué)生去思考、去探究。我讓他們將課前準備好的三角形拿出來(lái)進(jìn)行研究,學(xué)生通過(guò)折一折、拼一拼、剪一剪等活動(dòng)找到自己的驗證方法。學(xué)生拿著(zhù)他們手中的.三角形,在講臺上講述自己的驗證方法,雖然有的方法很不成熟,但也可以看出這個(gè)過(guò)程中,滲透了他們發(fā)現的樂(lè )趣。這樣,學(xué)生在經(jīng)歷“再創(chuàng )造”的過(guò)程中,完成了對新知識的構建和創(chuàng )造。
。ㄈ┮詫W(xué)定教,注重教學(xué)的有效性
新課表指出:數學(xué)教學(xué)活動(dòng)必須建立在學(xué)生的認知發(fā)展水平和已有的知識經(jīng)驗基礎之上。要把學(xué)生的個(gè)人知識、直接經(jīng)驗和現實(shí)世界作為數學(xué)教學(xué)的重要資源,即以學(xué)定教,注重每個(gè)教學(xué)環(huán)節的有效性。本課中當我提出“為什么一個(gè)三角形中不能有兩個(gè)角是直角”時(shí),有學(xué)生指出如果有兩個(gè)直角,它就拼不成了一個(gè)三角形;也有學(xué)生說(shuō)如果有兩個(gè)直角,它就趨向于長(cháng)方形或正方形!盀槭裁磿(huì )這樣呢”?學(xué)生沉默片刻后,忽然有個(gè)學(xué)生舉手了:“因為三角形的內角和是180度,兩個(gè)直角已經(jīng)有180度了,所以不可能有兩個(gè)角是直角!边@樣的回答把本來(lái)設計的教學(xué)環(huán)節打亂了,此時(shí)我靈機把問(wèn)題拋給學(xué)生,“你們理解他說(shuō)的話(huà)嗎、你怎么知道內角和是180度、誰(shuí)都知道三角形的內角和是180度”等,當我看到大多數的已經(jīng)知道這一知識時(shí),我就把學(xué)生直接引向主題“想不想自己研究證明一下三角形的內角和是不是180度!奔ぐl(fā)了學(xué)生探究的興趣,使學(xué)生馬上投入到探究之中。
在練習的時(shí)候,由于形式多樣,所以學(xué)生的興趣非常高漲,效果很好。通過(guò)多邊形內角和的思考以及驗證,發(fā)展了學(xué)生的空間想象力,使課堂的知識得以延伸。<
三角形內角和教學(xué)設計3
微課作品介紹本微課是蘇教版小學(xué)數學(xué)四年級下冊《三角形內角和》的課前先學(xué)指導,學(xué)生在家觀(guān)看視頻內容,同時(shí)結合學(xué)習任務(wù)單,在視頻的指導下通過(guò)猜、量、算、剪、拼等方法探索三角形的內角和是180度。學(xué)生在課前利用視頻完成學(xué)習任務(wù)單,然后到學(xué)校課堂中和老師、同學(xué)進(jìn)行交流,再進(jìn)一步提升。
教學(xué)需求分析適用對象分析該微課的適用對象是蘇教版四年級下學(xué)期的小學(xué)生,學(xué)生應認識三角形的基本特征,學(xué)習過(guò)角和角的度量,知道平角是180度。具備了一定的動(dòng)手操作能力和數學(xué)思維能力。
學(xué)習內容分析該微課讓學(xué)生發(fā)現、驗證三角形的內角和是180度的結論。這部分內容是在學(xué)生認識了三角形的基本特征和三邊的關(guān)系后,三角形分類(lèi)前學(xué)習的。這在蘇教版中和原來(lái)的教材不同,放在這里是因為三角形內角和是學(xué)生進(jìn)一步學(xué)習和探究三角形分類(lèi)方法的重要前提。學(xué)生知道了三角形的內角和是180度,對三角形分類(lèi)及命名的方法,才能知其然,還能知其所以然。
教學(xué)目標分析:
1、通過(guò)學(xué)生的實(shí)際操作,理解并驗證三角形的內角和等于180°,并能夠運用結論解決簡(jiǎn)單的實(shí)際問(wèn)題;
2、使學(xué)生通過(guò)觀(guān)察、實(shí)驗,經(jīng)歷猜想與驗證三角形內角和的探索過(guò)程,在活動(dòng)中發(fā)展學(xué)生的空間觀(guān)念和推理能力。
3、已經(jīng)有不少學(xué)生知道了三角形內角和是180度,,但卻不知道怎樣才能得出這個(gè)結論,因此學(xué)生在學(xué)習時(shí)的主要目標是驗證三角形的內角和是180度。
教學(xué)過(guò)程設計本微課教學(xué)過(guò)程:
一、明確多邊形的內角、內角和概念。
首先要明確概念,才好繼續研究。內角、內角和以前學(xué)生沒(méi)有學(xué)過(guò),還是有必要給學(xué)生明確的。
二、探索三角尺的內角和,猜想三角形的內角和。
從學(xué)生熟悉的三角板開(kāi)始計算三角板的內角和,引發(fā)學(xué)生猜想,三角形的內角和是多少。
三、驗證三角形內角和是否為180°。
驗證分為三個(gè)層次:首先是量教材提供的三角形,算出內角和,可能會(huì )有誤差。其次把三角形三個(gè)內角拼在一起,拼成是平角180度。最后自己任意畫(huà)一個(gè)三角形剪下來(lái),拼一拼,得出結論。讓學(xué)生經(jīng)歷由特殊到一般的認知過(guò)程。
四、拓展延伸,探究梯形、平行四邊形和六邊形內角和。
由三角形的內角和,學(xué)生自然就會(huì )想到已學(xué)過(guò)的梯形、平行四邊形和六邊形內角和是多少呢。教師留下問(wèn)題讓學(xué)有余力的.學(xué)生進(jìn)一步去探索。
五、自主學(xué)習檢測
學(xué)生觀(guān)看完了視頻是否學(xué)會(huì )了,是需要檢測的。學(xué)生通過(guò)做完自主檢測后進(jìn)行校對,檢驗自己所學(xué)。
學(xué)習指導本微視頻應配合下面的學(xué)習任務(wù)單共同使用,在觀(guān)看視頻時(shí),根據視頻提示隨時(shí)暫停視頻依次完成任務(wù)單。
自主學(xué)習前準備:
請在自主學(xué)習前閱讀學(xué)習任務(wù)單的學(xué)習指南,并準備好數學(xué)書(shū)、一副三角尺、量角器、剪刀、鉛筆等學(xué)習用具。
自主學(xué)習任務(wù)單:
通過(guò)觀(guān)看教學(xué)資源自學(xué),完成下列學(xué)習任務(wù):
任務(wù)一:明確多邊形的內角、內角和概念
1、你認識下面的圖形嗎?他們各有幾個(gè)角,請在圖中標出來(lái)。
2、你剛才標出的角,又叫做每個(gè)圖形的()。
3、如果把一個(gè)圖形所有的內角的度數加起來(lái),所得的總和就是這個(gè)圖形的()。
4、你知道圖中長(cháng)方形和正方形的內角和是多少度嗎?你是怎么知道的?
長(cháng)方形內角和正方形內角和
任務(wù)二:探索三角尺的內角和,猜想三角形的內角和。
1、請拿出一副三角尺,你知道每塊三角尺上各個(gè)角的度數?在圖上標出來(lái)。
2、算一算,每個(gè)三角尺3個(gè)內角的和是多少度。
3、根據你剛才的計算結果,你能猜想一下,任意一個(gè)三角形它的內角和的度數呢?
任務(wù)三:驗證任意三角形內角和是否為180°
1、請從數學(xué)書(shū)本第113頁(yè)剪下3個(gè)三角形,用量角器量出每個(gè)三角形3個(gè)內角的度數。
算一算,每個(gè)三角形3個(gè)內角的和是多少度。
2還可以用什么辦法來(lái)驗證剪下的這3個(gè)三角形的內角和等于180度?(把你的驗證方法展示在下面。)如果你想不出來(lái)請看下面的提示。
溫馨提示:平角正好是180°,這三個(gè)內角能正好拼成一個(gè)平角嗎?
3、自己任意畫(huà)一個(gè)三角形,先剪下來(lái),再拼一拼。
4、你發(fā)現了什么?寫(xiě)在下面。
5、請你回顧一下我們研究三角形形內角和是180度的過(guò)程?簡(jiǎn)單的寫(xiě)下來(lái)。
任務(wù)四:拓展延伸
任務(wù)一中還有梯形、平行四邊形和六邊形,如果你有興趣,你可以研究他們的內角和。
任務(wù)五:自主學(xué)習檢測
1、右邊三角形中,∠1=75°,∠2=40°,∠3=()°
2、第3個(gè)三角形還可以怎樣計算,哪種更簡(jiǎn)便?
3、一塊三角尺的內角和是180°,用兩塊完全一樣的三角尺拼成一個(gè)三角形,拼成的三角形內角和是多少度?
4、用一張長(cháng)方形紙折一折,填一填
配套學(xué)習資料蘇教版小學(xué)數學(xué)四年級下冊教材
制作技術(shù)介紹Camtasia Studio軟件制作、PPT。
三角形內角和教學(xué)設計4
教學(xué)目標:
1、通過(guò)測量一量、拼一拼、折一折三個(gè)活動(dòng),探索和發(fā)現三角形三個(gè)內角的度數和等于180°。
2、已知三角形兩個(gè)角的度數,會(huì )求出第三個(gè)角的度數。
3、經(jīng)歷三角形內角和的研究方法,感受數學(xué)研究方法。
教學(xué)重點(diǎn):
1、探索和發(fā)現三角形三個(gè)內角的度數和等于180°。
2、已知三角形兩個(gè)角的度數,會(huì )求出第三個(gè)角的度數。
教學(xué)難點(diǎn):掌握探究方法(猜想-驗證-歸納總結),學(xué)會(huì )用“轉化”的數學(xué)思想探究三角形內角和。
教學(xué)用具:表格、課件。
學(xué)具準備:各種三角形、剪刀、量角器。
一、創(chuàng )設情境揭示課題。
1、一天兩個(gè)三角形發(fā)生了爭執,他們請你們來(lái)評評理。大三角形說(shuō):“我的個(gè)頭大,所以我的內角和一定比你大!毙∪切魏懿桓市牡卣f(shuō):“我有一個(gè)鈍角,我的內角和一定比你大!。誰(shuí)說(shuō)得有道理呢?今天讓我們來(lái)做一回裁判吧。
生1:大三角形大(個(gè)子大)
生2:小三角形大(有鈍角)
。ń處煵蛔雠袛,讓學(xué)生帶著(zhù)問(wèn)題進(jìn)入新課)
2、什么是三角形的內角和?(板書(shū):內角和)
講解:三角形內兩條邊所夾的角就叫做這個(gè)三角形的內角。每個(gè)三角形都有三個(gè)內角,這三個(gè)內角的度數加起來(lái)就是三角形的內角和。
二、自主探究,合作交流。
。ㄒ唬┨岢鰡(wèn)題:
1、你認為誰(shuí)說(shuō)得對?你是怎么想的?
2、你有什么辦法可以比較一下這兩個(gè)三角形的內角和呢?
生1:用量角器量一量三個(gè)內角各是多少度,把它們加起來(lái),再比較。
生2:用拼一拼的辦法把三個(gè)角拼到一起看它們能不能組成平角。
生3:用折一折的辦法把三個(gè)角折到一起看它們能不能組成平角
。ǘ┨剿髋c發(fā)現
活動(dòng)一:量一量
。1)①了解活動(dòng)要求:(屏幕顯示)
A、在練習本上畫(huà)一個(gè)三角形,量一量三角形三個(gè)內角的度數并標注。(測量時(shí)要認真,力求準確)
B、把測量結果記錄在表格中,并計算三角形內角和。
C、討論:從剛才的測量和計算結果中,你發(fā)現了什么?
。ㄒ龑仡櫥顒(dòng)要求)
、谛〗M合作。
、蹍R報交流。
你們測量了幾個(gè)三角形?它們的內角和分別是多少?從測量和計算結果中你們發(fā)現了什么?
。ㄒ龑W(xué)生發(fā)現每個(gè)三角形的三個(gè)內角和都在180°,左右。)
。2)提出猜想
剛才我們通過(guò)測量和計算發(fā)現了三角形內角和都在180度左右,那你能不能大膽的猜測一下:三角形內角和是否相等?三角形的內角和等于多少度呢?(板書(shū):猜測)
活動(dòng)二:拼一拼,驗證猜想
這個(gè)猜想是否成立呢?我們要想辦法來(lái)驗證一下。(板書(shū)驗證)
引導:180°,跟我們學(xué)過(guò)的什么角有關(guān)?我們課前準備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個(gè)內角轉換成一個(gè)平角呢?
。1)小組合作,討論驗證方法。(把三個(gè)角撕下來(lái),拼在一起,3個(gè)角拼成了一個(gè)平角,所以三角形內角和就是180°)。
。2)討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結論呢?
。3)分組匯報,討論質(zhì)疑
。4)課件演示,驗證結果
活動(dòng)三:折一折
師生一起活動(dòng),教師先讓學(xué)生看課件演示,然后拿出準備好的三角形紙艮老師一起折一折。
。ò讶切蔚慕1折向它的對邊,使頂點(diǎn)落在對邊上,然后另外兩個(gè)角相向對折,使它們的頂點(diǎn)與角1的頂點(diǎn)互相重合,也證明了三角形內角和等于180°,)。
討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結論?
提問(wèn):還有沒(méi)有其它的方法?
3、回顧兩種方法,歸納總結,得出結論。
。1)引導學(xué)生得出結論。
孩子們,三角形內角和到底等于多少度呢?”
學(xué)生答:“180°!”
。2)總結方法,齊讀結論
我們通過(guò)動(dòng)作操作,折一折,拼一拼,把三角形的'三個(gè)內角轉換成了一個(gè)平角,成功的得到了這個(gè)結論,讓我們?yōu)樽约旱某晒恼!齊讀結論。(板書(shū):得到結論)
。3)解釋測量誤差
為什么我們剛才通過(guò)測量,計算出來(lái)的三角形內角和不是180°,呢?
那是因為我們在測量時(shí),由于測量工具、測量操作等各方面的原因,使我們的測量結果存在一定的誤差。實(shí)際上,三角形內角和就等于180°
。ㄈ┗仡檰(wèn)題:
現在你知道這兩個(gè)三角形誰(shuí)說(shuō)得對了嗎?(都不對。
為什么?請大家一起,自信肯定的告訴我。
生:因為三角形內角和等于1800180°。(齊讀)
三、鞏固深化,加深理解。
1、試一試:數學(xué)書(shū)28頁(yè)第3題
∠A=180°-90°-30°
2、練一練:數學(xué)書(shū)29頁(yè)第一題(生獨立解決)
∠A=180°-75°-28°
3、小法官:數學(xué)書(shū)29頁(yè)第二題
四、回顧課堂,滲透數學(xué)方法。
1、總結:猜想—驗證—歸納—應用的數學(xué)方法。
2、介紹:三角形內角和等于180度這個(gè)結論的由來(lái);數學(xué)領(lǐng)域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。
3、課堂延伸活動(dòng):探索——多邊形內角和
板書(shū)設計:
探索與發(fā)現(一)
三角形內角和等于180°
三角形內角和教學(xué)設計5
教學(xué)目標:
。.知道三角形的內角和是180度,理解三角形內角和與三角形的大小無(wú)關(guān)。
。.通過(guò)測量、計算、猜想、實(shí)驗等數學(xué)活動(dòng),積累認識圖形的方法和經(jīng)驗,逐步推理、歸納出三角形內角和。
3.關(guān)注學(xué)生在操作活動(dòng)中遇到的真問(wèn)題,培養學(xué)生誠實(shí)嚴謹的實(shí)驗態(tài)度,實(shí)事求是的科學(xué)的態(tài)度。
教學(xué)重點(diǎn):
知道三角形的內角和是180度,理解三角形的內角和與三角形的大小、形狀無(wú)關(guān)。
教學(xué)難點(diǎn):
經(jīng)歷操作活動(dòng),推理、歸納出三角形的內角和。
教學(xué)資源:
多煤體課件,各種三角形,三角板,量角器,剪刀。
教學(xué)活動(dòng):
一、創(chuàng )設情境,導入新課。
1.昨天我們學(xué)習了三角形的分類(lèi),三角形按角的特征怎么分類(lèi)?按邊的'特征怎么分類(lèi)?
2.信封中裝一個(gè)三角形露出一個(gè)銳角,猜一猜信封中裝的是一個(gè)什么三角形?能確定嗎?(露出一個(gè)鈍角)現在能確定了嗎?為什么現在就能確定了?(有一個(gè)鈍角,兩個(gè)銳的三角形是鈍角三角形)。
3.三角形中還隱藏著(zhù)那些知識?三角形的三個(gè)內角的和是多少度?這節課我們研究三角形的內角和。(板書(shū)課題:三角形的內角和)
二、合件交流,操作發(fā)現。
1.(課件)你知道三角尺內角的度數分別是多少嗎?每個(gè)直角三角尺的內角度數之和都是多少度?我們能根據三角尺的內角和是180度,就得出三角形的內角和的結論嗎?應該怎么研究?(應該把三角形中所有的類(lèi)型銳角三角形、直角三角形、鈍角三角形都研究后,才能得出結論)(課件出示學(xué)習單)。
2.組織學(xué)生小組合作:
請同學(xué)們以4人為一個(gè)小組,三個(gè)人分別量一量,算一算一種三角形的內角的度數,小組長(cháng)填寫(xiě)學(xué)習單。老師巡視。①師:能不能只量出兩個(gè)角的度數,不量第三個(gè)角的度數,就開(kāi)始填表、計算?(我們的研究必須是科學(xué)的、實(shí)事求是的,測量的數據必須是真實(shí)的,來(lái)不的半點(diǎn)馬虎)。②同桌交流,你們有什么發(fā)現?
3.組織學(xué)生匯報交流:
、倌莻(gè)組說(shuō)一說(shuō)你們組測量的數據和計算的結果?(學(xué)生的計算不是正好180度時(shí),問(wèn):大約是多少度?)②你們有什么發(fā)現?(銳角三角形、直角三角形、鈍角三角形的內角和大約都是180度。③你能提出什么猜想?(我猜三角形的內角和是180度)老師板書(shū):三角形的內角和是180°我們的猜想對不對,(在板書(shū)后面打上“?”),就需要我們驗證,請同學(xué)們想辦法驗證我們的猜想對不對?(學(xué)生通過(guò)折的方法剪拼進(jìn)行驗證;學(xué)生通過(guò)剪、拼的方法進(jìn)行驗證。)
4.學(xué)生展臺展示自己的難方法。通過(guò)驗證,我們發(fā)現三角形的內角和是180度。老師把“?”改為“!”。
5.操作總會(huì )有誤差,有沒(méi)有別的方法說(shuō)明呢?(老師課件演示長(cháng)方形的四個(gè)角都是直角,所以長(cháng)方形的內角和應為:90°×4=360°。將長(cháng)方形沿對角線(xiàn)分割,可以分成兩個(gè)完全相等的直角三角形,所以直角三角形內角和應為:360°÷2=180°;沿高可以將任意三角形分成兩個(gè)直角三角形。由于前面證明了任意直角三角形的內角和是180°,因此兩個(gè)直角三角形的內角和應為:180°×2=360°。而直角三角形的兩個(gè)直角不屬于分割前三角形的內角,因此任意三角形的內角和應為:360°-180°=180°。)
三、實(shí)踐應用,拓展延伸。
1.這里有一條紅領(lǐng)巾,它的形狀是等腰三角形,其中∠1=110°,請計算出∠2=()°,∠3=()°。
2.把下面這個(gè)三角形沿虛線(xiàn)剪成兩個(gè)小三角形,每個(gè)小三角形的內角和是多少度?(把一個(gè)三角形剪成兩個(gè)小三角形,雖然大小發(fā)生了變化,可是內角和依然是180度,說(shuō)明三角形的內角和與三角形大小無(wú)關(guān))。
四、反思總結,自我建構。
這節課你有什么收獲?
這節課我們就研究到這兒,同學(xué)們再見(jiàn)!
三角形內角和教學(xué)設計6
教學(xué)內容
人教版小學(xué)數學(xué)第八冊第五單元第85頁(yè)例5
任務(wù)分析
教材分析: 《三角形的內角和》是義務(wù)教育課程標準實(shí)驗教科書(shū)(數學(xué))四年級下冊第五單元《三角形》中的一個(gè)教學(xué)內容。這部分內容是在學(xué)生學(xué)習了角的度量,角的分類(lèi),三角形的認識,三角形的分類(lèi)的基上進(jìn)行教學(xué)的。它是三角形的一個(gè)重要性質(zhì),有助于學(xué)生理解三角形的三個(gè)內角之間的關(guān)系,也是進(jìn)一步學(xué)習的基礎。教材通過(guò)實(shí)際操作,引導學(xué)生用實(shí)驗的方法探索并歸納出這一規律,即任意一個(gè)三角形,它的內角和都是180度。教材在編寫(xiě)上也深刻的體現出了讓學(xué)生探究的特點(diǎn),通過(guò)動(dòng)手操作探究發(fā)現三角形內角和為180度。教學(xué)內容的核心思想體現在讓學(xué)生經(jīng)歷猜想—驗證—結論的過(guò)程,來(lái)認識和體驗三角形內角和的特點(diǎn)。
學(xué)情分析:通過(guò)前面的學(xué)習,學(xué)生已經(jīng)掌握了三角形的一些基礎知識,會(huì )用工具量角、畫(huà)角,具備了探索三角形內角和的知識與基礎技能。在四年級上冊《角的度量》的學(xué)習中,學(xué)生有接觸到兩把三角尺的內角和是180°;并在相關(guān)的補充習題和數學(xué)練習冊的練習中,也有要求測量任意三角形的三個(gè)內角的度數并求出它們的和的練習,很多學(xué)生已經(jīng)知道了三角形的內角和是180°。但是要真正理解和掌握需要進(jìn)行驗證,因此,學(xué)生在這節課上的主要任務(wù)是通過(guò)實(shí)驗操作驗證三角形的內角和是180°。
教學(xué)目標
1、通過(guò)實(shí)驗、操作、推理歸納出三角形內角和是180°。
2、能運用三角形的內角和是180°這一規律,求三角形未知角的度數并運用解決實(shí)際生活問(wèn)題。
3、通過(guò)拼擺,感受數學(xué)的轉化思想。
教學(xué)重點(diǎn)
探究發(fā)現和驗證“三角形的內角和180度”。
教學(xué)難點(diǎn)
驗證三角形的內角和是180度。
教學(xué)準備
多媒體課件,銳角三角形、直角三角形、鈍角三角形,剪刀,量角器等。
教學(xué)過(guò)程
一、復習舊知,學(xué)習鋪墊
1、一個(gè)平角是多少度?等于幾個(gè)直角?
2、如下圖,已經(jīng)∠ 1=35°,∠2=78°,求∠3是多少度?
二、探究新知,理解規律
1、說(shuō)明三角形的三個(gè)內角和
說(shuō)出手中三角形的類(lèi)型(銳角三角形,直角三角形,鈍角三角形)并說(shuō)出三角形有幾個(gè)角?
師(指出):三角形的這三個(gè)角叫做三角形的.三個(gè)內角,這三個(gè)內角的度數和叫做三角形的內角和。
板書(shū)課題:“三角形的內角和”。
揭示課題:今天我們一起來(lái)探究三角形的內角和有什么規律。
2、探究三角形的內角和規律
探究1:量一量,算一算
以小組為單位,用量角器計算出三種三角形的內角和各是多少度?
生討論匯報,并引導學(xué)生發(fā)現:三角形的內角和接近180°。
師:三角形的內角和接近180°,那它到底與180° 有怎樣的關(guān)系呢?
學(xué)生預設:有學(xué)生可能會(huì )說(shuō)出三角形的內角和就是180°,這時(shí)老師可以提問(wèn),為什么就是180°?我們要進(jìn)行驗證,你有什么辦法呢?
探究2:擺一擺,拼一拼
引導:我們剛剛每個(gè)三角形都量了三次角,每一次度量都有誤差,所以量出來(lái)的內角和有誤差。能不能換一種方法減少度量的次數,減少誤差呢?
生可能很難想到,可以提示學(xué)生:把三個(gè)內角拼成一個(gè)角就只要量一次角。讓我們一起動(dòng)手做一做
如圖:
。1)
銳角的三個(gè)內角拼成了一個(gè)平角,引導學(xué)生說(shuō)出:銳角三角形的內角和是180°.
。2)
讓學(xué)生小組合作用同樣的方法,發(fā)現:直角三角形的內角和也是180°.
。3)
讓學(xué)生獨立用同樣的方法,發(fā)現:鈍角三角形的內角和也是180°.
引導學(xué)生歸納:三角形的內角和是180°。
是不是所有的三角形的內角和都是180°呢? (是,因為這三類(lèi)三角形包括了所有三角形。)
板書(shū):三角形的內角和是180°
三、鞏固練習,應用規律
1、在一個(gè)三角形中,∠1=140°,∠3=25°,你能求出∠2的度數嗎?
學(xué)生獨立完成,并說(shuō)出原因:因為三角形的內角和是180°,也就是∠1+∠2+∠3=180°,借助圖像
∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)
= 180°-140°-25° =180°-(140°+25°)
=40°-25° =180°-165°
=15° =15°
2、一個(gè)等腰三角形的頂角是80°,它的兩個(gè)底角各是多少度?
學(xué)生分析:因為等腰三角形的兩個(gè)底角相等,又因為三角形的內角和是180°,所以
。180°-80°)÷2
=100°÷2
=50°
四、拓展練習,深化規律
1、求出下面各角的度數。
。1) (2)
2、判斷
。1)三角形任意兩個(gè)內角的和大于第三個(gè)角。( )
。2)銳角三角形任意兩個(gè)內角的和大于直角。( )
。3)有一個(gè)角是60°的等腰三角形不一定是等邊三角形。( )
3、下面是兩塊三角形的玻璃打碎后留下的殘片,你知道它們原來(lái)各是什么三角形嗎?
。 ) ( )
五、課堂小結,分享提升
1、談?wù)勥@節課你有什么收獲?
2、課后思考題
三角形的內角和是180°,那長(cháng)方形、正方形的內角和呢?(根據三角形的內角和是180°求,參考課本88頁(yè)第12題,完成89頁(yè)16題)
板書(shū)設計
三角形內角和教學(xué)設計7
一、說(shuō)教材
北師版八年級下冊第六章《證明一》,是在前面對幾何結論已經(jīng)有了一定的直觀(guān)認識的基礎上編排的,而前幾冊對有關(guān)幾何結論都曾進(jìn)行過(guò)簡(jiǎn)單的說(shuō)理,本章內容則嚴格給出這些結論的證明,并要求學(xué)生掌握證明的一般步驟及書(shū)寫(xiě)表達格式!度切蝺冉呛投ɡ淼淖C明》則是對前幾節證明的自然延續。此外,它的證明中引入了輔助線(xiàn),這些都為后繼學(xué)習奠定了基礎。
二、說(shuō)目標
1.知識目標:掌握“三角形內角和定理的證明”及其簡(jiǎn)單的應用。
2.能力目標培養學(xué)生的數學(xué)語(yǔ)言表達、邏輯推理、問(wèn)題思考、組內及組間交流、動(dòng)手實(shí)踐等能力。
3.情感、態(tài)度、價(jià)值觀(guān):
在良好的師生關(guān)系下,建立輕松的學(xué)習氛圍,使學(xué)生體會(huì )獲得知識的成就感及與他人合作的樂(lè )趣,以增強其數學(xué)學(xué)習的自信心。
4.教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):三角形的內角和定理的證明及其簡(jiǎn)單應用。
難點(diǎn):三角形的內角和定理的證明方法的討論。
三、說(shuō)學(xué)校及學(xué)生現實(shí)情況
我校是藍田縣一所普通初中,四面非山即嶺,距藍田縣城四十里之遙。但由于國家對西部教育的大力支持,學(xué)校有遠程多媒體網(wǎng)絡(luò )教室,為師生提供了良好的學(xué)習硬件環(huán)境。我校學(xué)生幾乎全部來(lái)自本鎮農村,而我所教授的八年級四班學(xué)生,大多家庭貧苦,所以學(xué)習認真踏實(shí),有強烈的求知欲;此外,善于鉆研是他們的特點(diǎn),并且,有較強的合作交流意識。
四、說(shuō)教法
根據本節課教學(xué)內容特點(diǎn),我采用啟發(fā)、引導、探索相結合的教學(xué)方法,使學(xué)生充分發(fā)揮學(xué)習主動(dòng)性、創(chuàng )造性。
五、說(shuō)教學(xué)設計
〈一〉、創(chuàng )設情景,直入主題
一堂新課的引入是教師與學(xué)生活動(dòng)的開(kāi)始,而一個(gè)成功的引入,可使學(xué)生破除畏難心理,對知識在短時(shí)間內產(chǎn)生濃厚的興趣,接下來(lái)的教學(xué)活動(dòng)就變得順理成章。我的具體做法是:簡(jiǎn)單回憶舊知識,“證明的一般步驟是什么?”學(xué)生輕松做答,我肯定之后緊接著(zhù)說(shuō):“本節課就是用證明的方法學(xué)習一個(gè)熟悉的結論!是什么呢?請看大屏幕!”。盡量使問(wèn)題簡(jiǎn)單化,這樣更利于學(xué)生投入新課。
〈二〉、交流對話(huà),引導探索
1、巧妙提問(wèn),合理引導
證明思想的引入時(shí),問(wèn):同學(xué)們,七年級時(shí)如何得到此結論?(留一定時(shí)間讓他們討論、交流、達成共識)學(xué)生回答后,我及時(shí)肯定并鼓勵后拋出問(wèn)題:他們的共同之處是什么?學(xué)生容易回答:湊成一平角。我說(shuō):很好!那你們用這樣的'思想能證明這個(gè)命題是個(gè)真命題嗎?趕快試試吧!這樣,既引導了證明的方向,又激發(fā)了學(xué)生的學(xué)習興趣。接下來(lái)學(xué)生做題,我巡視。同時(shí)讓一學(xué)生板演。
2、恰當示范,培養學(xué)生正確的書(shū)寫(xiě)能力
在學(xué)生做完之后,我與他們一道分析板演同學(xué)證明是否合理,并利用多媒體給出正確書(shū)寫(xiě)方法。
3、一題多解,放手讓學(xué)生走進(jìn)自主學(xué)習空間
正因為學(xué)生的預習,所以他們證明的方法有所局限,這時(shí),我拋出問(wèn)題:再想想,還有其他方法嗎?將課堂時(shí)間又交還他們,將其思維推向高潮。學(xué)生思考,繼而熱烈討論,此時(shí),我又走到學(xué)生中去,對有困難的學(xué)生多加關(guān)注和指導,不放棄任何一個(gè),同時(shí),借此機會(huì )增進(jìn)教師與學(xué)困生之間的情誼,為繼續學(xué)習奠定基礎。最后,請有新方法的同學(xué)敘述其思想方法,我用大屏幕展示不同做法的合情推理過(guò)程。
4、展示歸納,合理演繹
利用多媒體展示三角形內角和定理的幾種表達形式,以促其學(xué)以致用。
5、反饋練習
用隨堂練習來(lái)鞏固學(xué)生所學(xué)新知,另一方面進(jìn)一步提高學(xué)生的書(shū)寫(xiě)能力。同時(shí),在他們作完之后,多媒體展示正確寫(xiě)法,加強教學(xué)效果。
〈三〉、課堂小結
1 采用讓學(xué)生感性的談?wù)J識,談收獲。設計問(wèn)題:
2(1)、本節課我們學(xué)了什么知識?
。2)、你有什么收獲?
目的是發(fā)揮學(xué)生主體意識,培養其語(yǔ)言概括能力。
六、說(shuō)教學(xué)反思
本節課主要是以嚴謹的邏輯證明方法,驗證三角形內角和等于180度。讓學(xué)生充分體會(huì )有理有據的推理才是可靠的。而證明思想、書(shū)寫(xiě)的培養,是本節課的重點(diǎn)。自主學(xué)習、合作交流是新課程理念,也是我本節課的設計意圖。從學(xué)生課堂表現可以看出,教學(xué)效果良好。而學(xué)生的一些出乎意料的做法讓我倍感驚喜!把學(xué)生還給課堂,把課堂還給學(xué)生,也是我一貫的做法。
三角形內角和教學(xué)設計8
教學(xué)內容:本節課的教學(xué)內容是義務(wù)教育課程標準實(shí)驗教科書(shū)數學(xué)四年級下冊第五單位的第四課時(shí)《三角形的內角和》,主要內容是:驗證三角形的內角和是180°等。
教學(xué)內容分析:三角形的內角和是180是三角形的一個(gè)重要性質(zhì),它有助于學(xué)生理解三角形的三個(gè)內角之間的關(guān)系,也是進(jìn)一步學(xué)習的基礎。
教學(xué)對象分析:作為四年級的學(xué)生已有一定的生活經(jīng)驗,在平時(shí)的生活中已經(jīng)接觸到三角形,在尊重學(xué)生已有的知識的基礎上和利用他們已掌握的學(xué)習方法,教師把課堂教學(xué)組織生動(dòng)、活潑,突出知識性、趣味性和生活性,使學(xué)生能在輕松愉快的氣氛中學(xué)習。
教學(xué)目標:
1、知識目標:學(xué)生通過(guò)量、剪、拼、擺等操作學(xué)具活動(dòng),找到新舊知識之間的聯(lián)系,主動(dòng)掌握三角形內角和是180°,并運用所學(xué)知識解決簡(jiǎn)單的實(shí)際問(wèn)題。
2、能力目標:培養學(xué)生的觀(guān)察、歸納、概括能力和初步的空間想象力。
3、情感目標:培養學(xué)生的創(chuàng )新意識、探索精神和實(shí)踐能力,在學(xué)生親自動(dòng)手和歸納中,感受到理性的美。
教學(xué)重點(diǎn):理解并掌握三角形的內角和是180°。
教學(xué)難點(diǎn):驗證所有三角形的內角之和都是180°。
教具準備:多媒體課件、各種三角形等。
學(xué)具準備:三角形、剪刀、量角器等。
教學(xué)過(guò)程:
一、出示課題,復習舊知
1、認識三角形的內角。
。ǎ保⿵土暼切蔚母拍。
。ǎ玻┙榻B三角形的“內角”。
2、理解三角形的內角“和”。
【設計理念】通過(guò)復習三角形的概念的過(guò)程,不僅可以鞏固學(xué)生的舊知識而且可以為新知識教學(xué)提供知識鋪墊。
二、動(dòng)手操作,探究新知
1、通過(guò)預習,認識結論,提出疑問(wèn)
2、驗證三角形的內角和
。1)用“量一量、算一算”的方法進(jìn)行驗證
、賲R報測量結果
、诋a(chǎn)生疑問(wèn):為什么結果不統一?
、劢鉀Q疑問(wèn):因為存在測量誤差。
。2)用“剪一剪、拼一拼”的方法進(jìn)行驗證
、僦笇Ъ舴。
、俜謩e拼:銳角三角形、直角三角形、鈍角三角形。
、垓炞C得出:三角形的內角和是180°。
。3)用“折一折”的方法進(jìn)行驗證
、僦笇д鄯。
、俜謩e折:銳角三角形、直角三角形、鈍角三角形。
、墼俅悟炞C得出:三角形的內角和是180°。
3、看書(shū)質(zhì)疑
【設計理念】此過(guò)程采用直觀(guān)教學(xué)手段。通過(guò)讓學(xué)生動(dòng)手量、拼等直觀(guān)演示操作直接作用于學(xué)生的感官,激活學(xué)生的思維,有助于學(xué)生的認識由具體到抽象的轉化。從而明確三角形的內角和是180°。
三、實(shí)踐應用,解決問(wèn)題:
1、在一個(gè)三角形中,∠1=140°,∠3=25°,求∠2的度數。
2、求出三角形各個(gè)角的度數。(圖略)
3、爸爸給小紅買(mǎi)了一個(gè)等腰三角形的`風(fēng)箏。它的一個(gè)底角是
70°,它的頂角是多少度?
4、根據三角形的內角和是180°,你能求出下面的四邊形和正六邊形的內角和嗎?(圖略)
5、數學(xué)游戲。
【設計理念】練習設計的優(yōu)化是優(yōu)化教學(xué)過(guò)程的一個(gè)重要方向,所以在新授后的鞏固練習中注意設計層層遞進(jìn),既有坡度、又注意變式,更有一練一得之妙,從而使學(xué)生牢固掌握新知。
四、總結全課、延伸知識:
1、今天你們學(xué)到了哪些知識?是怎樣獲取這些知識的?你感覺(jué)學(xué)得怎樣?
2、知識延伸:給學(xué)生介紹一種更科學(xué)的驗證方法——轉化。
【設計理念】課堂總結不僅要關(guān)注學(xué)生學(xué)會(huì )了什么,更要關(guān)注用什么方法學(xué),要有意識的促進(jìn)學(xué)生反思。
板書(shū)設計: 三角形的內角和是180°
方法:
、倭恳涣 拼角(略)
、谄匆黄
、壅垡徽
【設計理念】此板書(shū)設計我力求簡(jiǎn)明扼要、布局合理、條理分明,體現了簡(jiǎn)潔美和形象美,把知識的重點(diǎn)充分地展現在學(xué)生的眼前,起了畫(huà)龍點(diǎn)睛的作用。
三角形內角和教學(xué)設計9
教學(xué)目標:
1、通過(guò)量、剪、拼、擺等直觀(guān)操作的方法,讓學(xué)生探索并發(fā)現三角形內角和等于180度。
2、在活動(dòng)交流中培養學(xué)生合作學(xué)習的意識和能力,讓學(xué)生經(jīng)歷猜測探索總結的數學(xué)學(xué)習過(guò)程,在實(shí)驗活動(dòng)中體驗探索的過(guò)程和方法。
3、通過(guò)運用三角形內角和的性質(zhì)解決一些簡(jiǎn)單的問(wèn)題,使學(xué)生體會(huì )數學(xué)與現實(shí)生活的聯(lián)系,體會(huì )到數學(xué)的價(jià)值,增加學(xué)生學(xué)數學(xué)的信心和興趣。
教學(xué)重點(diǎn):
探索發(fā)現三角形內角和等于180并能應用。
教學(xué)難點(diǎn):
三角形內角和是180的探索和驗證。
教學(xué)過(guò)程:
一、創(chuàng )設情境,提出問(wèn)題
師:大家喜歡猜謎語(yǔ)嗎?
生:喜歡。
師:下面請大家猜一個(gè)謎語(yǔ)(大屏幕出示形狀似座山,穩定性能堅。三竿首尾連,學(xué)問(wèn)不簡(jiǎn)單。
。ù蛞粠缀螆D形))
生:三角形。
師:三角形中都有哪些學(xué)問(wèn)?
生:三角形有三條邊,三個(gè)角,具有穩定性。
生:三角形按角分,可以分成銳角三角形、直角三角形、鈍角三角形。
生:三角形按邊分,可以分成等腰三角形,不等邊三角形,其中等腰三角形又包含了兩條邊相等的三角形和等邊三角形。
生:一個(gè)三角形中最多只能有一個(gè)直角,最多只能有一個(gè)鈍角,最少有兩個(gè)銳角。
生:三角形的內有和是180。
生:(一臉疑惑)
師:(板書(shū):三角形的內角和是180),你有什么疑惑? 生:什么是內角?
生:每個(gè)三角形的內角和都是180嗎?
。ǜ鶕䦟W(xué)生的問(wèn)題,在三角形的內角和是180后面加上一個(gè)?)
二、自主探索,實(shí)踐驗證
1、理解內角 師:什么是內角?
生:我認為三角形的內角就是指三角形的三個(gè)角。
師:三角形的每個(gè)角都是三角形的內角,每個(gè)三角形都有三個(gè)內角。
2、理解內角和。
師:那三角形的內角和又是指什么?
生:我認為三角形的內角和就是把三角形的三個(gè)內角的度數加起來(lái)的和。
師:為了方便,我們將三角形的每個(gè)內角編上序號1、2、3、我們叫它1、2、3,這三個(gè)角的度數和,就是這個(gè)三角形的內角和。
3、實(shí)踐驗證
師:每個(gè)三角形的內角和都是180嗎?用什么方法來(lái)驗證呢?
生:量一量每個(gè)角的度數,然后加起來(lái)看看是不是180。
師:請大家拿出課前準備的三角形,親自量一量,算一算。(學(xué)生動(dòng)手量一量)
師:誰(shuí)愿意把你的勞動(dòng)成果和大家分享一下?
生:我量的這個(gè)三角形的三個(gè)內角的度數分別是60、60、60,加起來(lái)一共是180。
師:這位同學(xué)量的`是一個(gè)銳角三角形,并且是比較特殊的三角形等邊三角形。
生:我量這個(gè)三角形的三個(gè)內角的度數分別是45、45、90,加起來(lái)一共是180。
師:這是我們三角尺中的一個(gè),也比較特殊,是一個(gè)等腰直角三角形。
生:我量的是三角尺中的另一個(gè),三個(gè)內角的度數分別是60、30、90,加起來(lái)一共是180 生:我量的是鈍角三角形,三個(gè)內角的度數分別是85、60、38,加起來(lái)一共是183。
師:你發(fā)現了什么?
生:有的三角形的內角和是180,而有的三角形的內角和卻不是180。
師:看來(lái)三角形的內角和不一定是180。
生:老師,測量會(huì )有誤差,量出來(lái)的不是很精確,那么求出來(lái)的結果也不夠精確。雖然不都是三個(gè)內角加起來(lái)不都是180,但都接近180。
生:都接近180就能說(shuō)一定是180嗎?
師:科學(xué)來(lái)不得半點(diǎn)虛假,看來(lái)這個(gè)是不能讓大家信服的。那還可以用什么方法來(lái)驗證呢?下面請同學(xué)們小組合作,發(fā)揮小組成員的智慧,充分利用大家的學(xué)具進(jìn)行驗證,比一比哪些組的方法富有新意,開(kāi)始!
。▽W(xué)生在小組內進(jìn)行探索驗證。教師巡視,參與到學(xué)生的研究中)
師:請每個(gè)小組選擇一個(gè)代言人,和大家分享一下你們的智慧。
生:(邊展示邊交流)我們小組運用了折一折的方法,把三角形的三個(gè)內角都向內折,三個(gè)內角就拼成了一個(gè)平角,也就是180,所以我們小組得出三角形的內角和是180。
師:你折的只是銳角三角形,只能證明銳角三角形的內角和是180,直角三角形,鈍角三角形是不是也是這樣的?
生:我們小組也有折的直角三角形,鈍角三角形。
。ㄆ渌某蓡T展示不同的三角形)
師:看這個(gè)小組的同學(xué)想問(wèn)題多全面呀,不僅想到了用什么方法,還想到了用不同的三角形進(jìn)行驗證,老師實(shí)在是佩服你們組的智慧,讓我們把掌聲送給他們!
師:哪個(gè)小組和他們的方法不一樣?
生:我們小組把三角形的三個(gè)內角都撕了下來(lái),拼在了一起,正好拼成了一個(gè)平角,也就是180。我們也實(shí)驗了不同的三角形,三個(gè)內角都可以拼成平角,所以我們小組得出結論,三角形的內角和是180。
師:這個(gè)小組的方法簡(jiǎn)便,易操作,很好。
生:我們小組成員是這樣想的,一個(gè)長(cháng)方形有4個(gè)直角,每個(gè)直角90,那么長(cháng)方形的內角和就是360,每個(gè)長(cháng)方形都可以平均分成兩個(gè)直角三角形,每個(gè)直角三角形的內角和就是180。 師:你們小組很聰明,從長(cháng)方形的內角和聯(lián)想到直角三角形的內角和是180,從不同的角度去思考問(wèn)題,謝謝你為我們提供了這么好的方法!
4、小結
師:剛才同學(xué)們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出了無(wú)論是什么樣的三角形的內角和都是1800,你還有什么疑問(wèn)嗎?
生:沒(méi)有。
師:(去掉問(wèn)號)那就讓我們大聲地讀出來(lái)三角形的內角和是1800。
三、鞏固應用,加深理解
1、說(shuō)一說(shuō)每個(gè)三角形的內角和是多少度
師:(出示一個(gè)大三角形)這個(gè)大三角形的內角和是多少度?
生: 180
師:(出示一個(gè)小三角形)這個(gè)小三角形的內角和是多少度?
生:180
師:(演示)把這兩個(gè)三角形拼在一起,拼成的大三角形的內角和是多少度?
生:180
師:為什么每個(gè)三角形的內角和是1800,而合起來(lái)還是180呢?另外那180去哪兒了?
生:把兩個(gè)三角形拼成一個(gè)大三角形,兩個(gè)直角不再是大三角形的內角,所以少了180
師:(演示)把一個(gè)大三角形分成兩個(gè)三角形,每個(gè)三角形的內角和是多少度?
生:180
2、求下面各角的度數
師:如果老師告訴你一個(gè)三角形的兩個(gè)角的度數,你能說(shuō)出第三個(gè)角的度數嗎?
。ǔ觯
生:三角形內角和是180,在第一個(gè)三角形中,用180-75-28,A=77
生:用180-90-35,C =55。
生:第二個(gè)三角形是直角三角形,B是直角,也可以直接用90-35=55。
生:第三個(gè)三角形中,用180-20-45,B=115。
3、一個(gè)等腰三角形的風(fēng)箏,它的一個(gè)底角是70,它的頂角是多少度?
生:等腰三角形的兩個(gè)底角相等,所以用180-70-70 4、
師:三角形的內角和在我們的生活中應用很廣泛,老師給大家帶來(lái)一個(gè)在建筑中應用的例子。
在設計這座大橋時(shí),如果設計師將斜拉的鋼索與橋柱形成的夾角設計成了56,建筑師在造橋時(shí)怎樣才能確定鋼索與橋柱是否形成了這個(gè)角度?
生:用量角器量一量
師:量哪個(gè)角?量一量斜拉的鋼索與橋柱形成的夾角嗎?
生:橋面與橋柱形成一個(gè)直角,是90,斜拉的鋼索與橋柱形成的夾角是56,那么用180-90-56=34,就是斜拉的鋼索與橋面的夾角,所以只要讓斜拉的鋼索與橋面的夾角是34,那么斜拉的鋼索與橋柱形成的夾角就是56
師:你真是個(gè)善于觀(guān)察、善于思考的孩子,努力學(xué)習,將來(lái)一定會(huì )成為一名優(yōu)秀的建筑師。
四、回顧總結,拓展延伸
師:40分鐘很快就過(guò)去了,你愿意把自己的收獲與大家共同分享嗎?
生:我知道了三角形的內角和是180。
生:無(wú)論是大三角形,還是小三角形,無(wú)論是銳角三角形,還是鈍角三角形,還是銳角三角形,內角和都是180。
生:把一個(gè)大三角形分成兩個(gè)小三角形,每個(gè)三角形的內角和還是180,把兩個(gè)小三角形拼成一個(gè)大三角形,大三角形的內角和還是180。
生:我可以用撕、拼、折等方法來(lái)驗證三角形的內角和是180。
師:這個(gè)同學(xué)不僅學(xué)會(huì )了知識,而且學(xué)會(huì )了方法,我們只有學(xué)會(huì )了方法,才能更好地去探究更多的知識。
師:那你現在知道為什么一個(gè)三角形內只能有一個(gè)直角或一個(gè)鈍角嗎?
生:兩個(gè)直角的度數之和是180,再加上一個(gè)角,三個(gè)角的度數之和超過(guò)了180,所以一個(gè)三角形中最多只能有一個(gè)直角。
生:兩個(gè)鈍角的度數之和就超過(guò)了180,再加上一個(gè)角,就更大了,所以一個(gè)三角形中最多只能有一個(gè)鈍角。
師:我們學(xué)習知識,必須知其然并知其所以然。
師:三角形中還有許許多多的學(xué)問(wèn),讓我們在以后的學(xué)習中繼續去研究。
三角形內角和教學(xué)設計10
【教材內容】:
北師大版四年級數學(xué)下冊
【教學(xué)目標】:
1、探索與發(fā)現三角形的內角和是180°,已知三角形的兩個(gè)角度,會(huì )求出第三個(gè)角度。
2、培養學(xué)生動(dòng)手操作和合作交流的能力,促進(jìn)掌握學(xué)習數學(xué)的方法。
3、培養學(xué)生自主學(xué)習、積極探索的好習慣,激發(fā)學(xué)生學(xué)習數學(xué)應用數學(xué)的興趣。
【教學(xué)重點(diǎn)和難點(diǎn)】:
重點(diǎn)掌握三角形的內角和是180°,會(huì )應用三角形的內角和解決實(shí)際問(wèn)題;難點(diǎn)是探索性質(zhì)的過(guò)程。
【教材分析】
《三角形內角和》屬于空間與圖形的范疇,是在學(xué)生已經(jīng)接觸了三角形的穩定性和三角形的分類(lèi)相關(guān)知識后對三角形的進(jìn)一步研究,探索三個(gè)內角的和。教材中安排了學(xué)生對不同形狀的、大小的三角形進(jìn)行進(jìn)行度量,運用折疊、拼湊等方法發(fā)現三角形的內角和是180°。擴充了學(xué)生認識圖形的一般規律從直觀(guān)感性的認識到具體的性質(zhì)探索,更加深入的培養了學(xué)生的空間觀(guān)念。
【教學(xué)過(guò)程】
一、創(chuàng )設情境,激發(fā)興趣。
出示課件,提出兩個(gè)兩個(gè)疑問(wèn):
1、兩個(gè)大小不一樣的兩個(gè)三角形的對話(huà)我比你大,所以我的內角和比你大,是這樣的嗎?
2、三個(gè)形狀不一樣的三角形的爭論。我們的形狀不一樣,所以我們的內角和各不相同,是這樣的嗎?老師發(fā)現它們爭論的'焦點(diǎn)是三角形的內角和的問(wèn)題,那什么是三角形的內角?什么又是三角形的內角和呢?
二、初建模型,實(shí)際驗證自己的猜想
在第一步的基礎上學(xué)生自然想到要量出三角形每個(gè)角的度數就能夠求出三角形的內角和,從而證明三角形的內角和與三角形的大小和形狀沒(méi)有關(guān)系都接近180度。這時(shí)教師要組織學(xué)生進(jìn)行小組合作,每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形、等腰三角形、等邊三角形)的三個(gè)內角,并計算出它們的總和是多少?把小組的測量結果和討論結果記錄下來(lái)以便全班進(jìn)行交流。
三角形的形狀
三角形每個(gè)內角的度數
內角和
銳角三角形
鈍角三角形
直角三角形
等腰三角形
等邊三角形
三、再建模型,徹底的得出正確的結論
因為在上一環(huán)節學(xué)生已經(jīng)得出三角形的內角和大約都是或接近180度。因為我們在測量時(shí)由于測量人不同、測量工具不同可能產(chǎn)生一些誤差。有的同學(xué)難免可能猜想三角形的內角和就是180度呢?我們繼續研究和探索。除了測量外我們是否可以利用我們手中的三角形通過(guò)拼一拼、折一折、畫(huà)一畫(huà)的方法來(lái)證明三角形的內角和都是180度呢?教師放手讓學(xué)生去思考、去動(dòng)手操作,對有困難和有疑問(wèn)的同學(xué)進(jìn)行提示和指導。然后讓學(xué)生到前面演示驗證的方法,教師借助多媒體進(jìn)行演示。
四、應用新知,鞏固練習
1、算一算,對于不同形狀的三角形給出其中的兩個(gè)角求第三個(gè)角的度數。(1小題屬于基本練習)
2、試一試,在直角三角形中已知其中的一個(gè)角求另一個(gè)角的度數
3、想一想,已知等腰三角形的頂角如何算出它的兩個(gè)底角;已知等腰三角形的一個(gè)底角的度數求三角形的頂角。
4、說(shuō)一說(shuō),判斷三角形的兩個(gè)銳角的和大于90度;直角三角形的兩個(gè)兩個(gè)銳角的和等90度;等腰三角形沿著(zhù)高對折,每個(gè)三角形的內角和是90度。這些說(shuō)法是否正確?由兩個(gè)三角形拼成一個(gè)大的三角形,大三角形的內角和是360度,對嗎?
五、拓展與延伸
通過(guò)三角形的內角和是180度的事實(shí)來(lái)探討四邊形、五邊行的內角和。
三角形內角和教學(xué)設計11
設計思路
本節課我先引導學(xué)生任意畫(huà)出不同類(lèi)型的三角形,用通過(guò)量一量、算一算,得出三角形的內角和是180°或接近180°(測量誤差),再引導學(xué)生通過(guò)剪拼的方法發(fā)現:各類(lèi)三角形的三個(gè)內角都可以拼成一個(gè)平角。再引導學(xué)生通過(guò)折角的方法也發(fā)現這個(gè)結論,由此獲得三角形的內角和是180°的結論。概念的形成沒(méi)有直接給出結論,而是通過(guò)量、算、拼、折等活動(dòng),讓學(xué)生探索、實(shí)驗、發(fā)現、推理歸納出三角形的內角和是180°。
最后讓學(xué)生運用結論解決實(shí)際問(wèn)題,練習的安排上,注意練習層次性和趣味性,還設計了開(kāi)放性的練習,由一個(gè)同學(xué)出題,其它同學(xué)回答。先給出三角形兩個(gè)內角的度數,說(shuō)出另外一個(gè)內角,有唯一的答案。給出三角形一個(gè)內角,說(shuō)出其它兩個(gè)內角,答案不唯一,可以得出無(wú)數個(gè)答案。讓學(xué)生在游戲中拓展學(xué)生思維。
教學(xué)目標
1、讓學(xué)生親自動(dòng)手,通過(guò)量、剪、拼等活動(dòng)發(fā)現、證實(shí)三角形內角和是180°,并會(huì )應用這一知識解決生活中簡(jiǎn)單的實(shí)際問(wèn)題。
2、讓學(xué)生在動(dòng)手獲取知識的過(guò)程中,培養學(xué)生的創(chuàng )新意識、探索精神和實(shí)踐能力。并通過(guò)動(dòng)手操作把三角形內角和轉化為平角的探究活動(dòng),向學(xué)生滲透“轉化”數學(xué)思想。
3、使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動(dòng)學(xué)習數學(xué)的興趣。
教學(xué)重點(diǎn)
讓學(xué)生經(jīng)歷“三角形內角和是180°”這一知識的形成、發(fā)展和應用的全過(guò)程。
教學(xué)準備
教具:多媒體課件、用彩色卡紙剪的相同的兩個(gè)直角三角形、一個(gè)鈍角三角形、一個(gè)銳角三角形。
學(xué)具:三角形
教學(xué)過(guò)程
一、引入
。ㄒ唬┱J識三角形的內角及三角形的內角和
師:我們已經(jīng)學(xué)習了三角形的分類(lèi),誰(shuí)能說(shuō)說(shuō)老師手上的是什么三角形?
師:今天我們來(lái)學(xué)習新的知識《三角形內角和》,誰(shuí)能說(shuō)說(shuō)哪些角是三角形的內角?(讓學(xué)生邊說(shuō)邊指出來(lái))
師:那三角形的內角和又是什么意思?(把三角形三個(gè)內角的度數合起來(lái)就叫三角形的內角和。)
。ǘ┰O疑,激發(fā)學(xué)生探究新知的心理
師:請同學(xué)們幫老師畫(huà)一個(gè)三角形,能做到嗎?(激發(fā)學(xué)生主動(dòng)學(xué)習的心理)
生:能。
師:請聽(tīng)要求,畫(huà)一個(gè)有兩個(gè)內角是直角的三角形,開(kāi)始。(設置矛盾,使學(xué)生在矛盾中去發(fā)現問(wèn)題、探究問(wèn)題。)
師:有誰(shuí)畫(huà)出來(lái)啦?
生1:不能畫(huà)。
生2:只能畫(huà)兩個(gè)直角。
生3:……
師:?jiǎn)?wèn)題出現在哪兒呢?這一定有什么奧秘?想不想知道?那就讓我們一起來(lái)研究吧!
。ń沂久,巧妙引入新知的探究)
二、動(dòng)手操作,探究三角形內角和
。ㄒ唬┎乱徊。
師:猜一猜三角形的內角和是多少度呢?同桌互相說(shuō)說(shuō)自己的看法。
生1:180°。
生2:不一定。
……
。ǘ┎僮、驗證三角形內角和是180°。
1、量一量三角形的內角
動(dòng)手量一量自己手中的三角形的內角度數。
師:所有三角形的內角和究竟是不是180°,你能用什么辦法來(lái)證明,使別人相信呢?
生:可以先量出每個(gè)內角的度數,再加起來(lái)。
師:哦,也就是測量計算,是嗎?
學(xué)生匯報結果。
師:請匯報自己測量的結果。
生1:180°。
生2:175°。
生3:182°。
……
2、拼一拼三角形的內角
學(xué)生操作
師:沒(méi)有得到統一的.結果。這個(gè)辦法不能使人很信服,怎么辦?還有其它辦法嗎?
生1:有。
生2:用拼合的辦法,就是把三角形的三個(gè)內角放在一起,可以拼成一個(gè)平角。
師:怎樣才能把三個(gè)內角放在一起呢?(學(xué)生操作)
生:把它們剪下來(lái)放在一起。
師:很好。
匯報驗證結果。
師:通過(guò)拼合我們得出什么結論?
生1:銳角三角形的內角拼在一起是一個(gè)平角,所以銳角三角形的內角和是180°。
生2:直角三角形的內角和也是180°。
生3:鈍角三角形的內角和還是180°。
課件演示驗證結果。
師:請看屏幕,老師也來(lái)驗證一下,是不是跟你們得到的結果一樣?(播放課件)
師:我們可以得出一個(gè)怎樣的結論?
生:三角形的內角和是180°。
。ń處煱鍟(shū):三角形的內角和是180°學(xué)生齊讀一遍。)
師:為什么用測量計算的方法不能得到統一的結果呢?
生1:量的不準。
生2:有的量角器有誤差。
師:對,這就是測量的誤差。
3、折一折三角形的內角
師:除了量、拼的方法,還有沒(méi)有別的方法可以驗證三角形的內角和是180°。
如果學(xué)生說(shuō)不出來(lái),教師便提示或示范。
學(xué)生操作
4、小結:三角形的內角和是180°。
三、解決疑問(wèn)。
師:現在誰(shuí)能說(shuō)說(shuō)不能畫(huà)出有兩個(gè)直角的一個(gè)三角形的原因?(讓學(xué)生體驗成功的喜悅)
生:因為三角形的內角和是180°,在一個(gè)三角形中如果有兩個(gè)直角,它的內角和就大于180°。
師:在一個(gè)三角形中,有沒(méi)有可能有兩個(gè)鈍角呢?
生:不可能。
師:為什么?
生:因為兩個(gè)銳角和已經(jīng)超過(guò)了180°。
師:那有沒(méi)有可能有兩個(gè)銳角呢?
生:有,在一個(gè)三角形中最少有兩個(gè)內角是銳角。
四、應用三角形的內角和解決問(wèn)題。
1、下面說(shuō)法是否正確。
鈍角三角形的內角和一定大于銳角三角形的內角和。()
在直角三角形中,兩個(gè)銳角的和等于90度。()
在鈍角三角形中兩個(gè)銳角的和大于90度。()
、芤粋(gè)三角形中不可能有兩個(gè)鈍角。()
、萑切沃杏幸粋(gè)銳角是60度,那么這個(gè)三角形一定是個(gè)銳角三角形。()
2、看圖求出未知角的度數。(知識的直接運用,數學(xué)信息很淺顯)
3、游戲鞏固。
由一個(gè)同學(xué)出題,其它同學(xué)回答。
。1)給出三角形兩個(gè)內角,說(shuō)出另外一個(gè)內角(有唯一的答案)。
。2)給出三角形一個(gè)內角,說(shuō)出其它兩個(gè)內角(答案不唯一,可以得出無(wú)數個(gè)答案)。
4、根據所學(xué)的知識算出四邊形、正五邊形、正六邊形的內角和。
五、全課總結。
今天你學(xué)到了哪些知識?是怎樣獲取這些知識的?你感覺(jué)學(xué)得怎么樣?
反思:
在本節課的學(xué)習活動(dòng)過(guò)程中,先讓學(xué)生進(jìn)行測量、計算,但得不到統一的結果,再引導學(xué)生用把三個(gè)角拼在一起得到一個(gè)平角進(jìn)行驗證。這時(shí),有部分學(xué)生在拼湊的過(guò)程中出現了困難,花費的時(shí)間較長(cháng),在這里用課件再演示一遍正好解決了這個(gè)問(wèn)題。再引導學(xué)生用折三角形的方法也能驗證三角形的內角和是180°。練習設計也具有許多優(yōu)點(diǎn),注意到練習的梯度,并由淺入深,照顧到不同層次學(xué)生的需求,也很有趣味性。在整個(gè)教學(xué)設計中,本著(zhù)“學(xué)貴在思,思源于疑”的思想,不斷創(chuàng )設問(wèn)題情境,讓學(xué)生去實(shí)驗、去發(fā)現新知識的奧妙,從而讓學(xué)生在動(dòng)手操作、積極探索的活動(dòng)中掌握知識,積累數學(xué)活動(dòng)經(jīng)驗,發(fā)展空間觀(guān)念和推理能力。
但因為是借班上課,對學(xué)生了解不多,學(xué)生前面的內容(三角形的特性和分類(lèi))還沒(méi)學(xué)好,所以有些練習學(xué)生就沒(méi)有預想的那么得心應手,如:知道等腰三角形的頂角求底角的題,學(xué)生掌握比較困難。
三角形內角和教學(xué)設計12
教學(xué)內容:
義務(wù)教育課程表準教科書(shū)數學(xué)(人教版)四年級下冊85頁(yè).例題5.
教學(xué)目標:
1.讓學(xué)生親自動(dòng)手,通過(guò)量、剪、拼等活動(dòng)發(fā)現、證實(shí)三角形內角和是180°,并會(huì )應用這一知識解決生活中簡(jiǎn)單的實(shí)際問(wèn)題。
2.讓學(xué)生在動(dòng)手獲取知識的過(guò)程中,培養學(xué)生的創(chuàng )新意識、探索精神和實(shí)踐能力。并通過(guò)動(dòng)手操作把三角形內角和轉化為平角的探究活動(dòng),向學(xué)生滲透“轉化”數學(xué)思想。
3.使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動(dòng)學(xué)習數學(xué)的興趣。
教學(xué)重點(diǎn):
讓學(xué)生經(jīng)歷“三角形內角和是180°”這一知識的形成、發(fā)展和應用的全過(guò)程。
教學(xué)準備:
多媒體課件、學(xué)具。
教學(xué)過(guò)程:
一、激趣引入
(一)認識三角形內角
1.我們已經(jīng)認識了三角形,什么是三角形?誰(shuí)能說(shuō)三角形按角分類(lèi),可以分成哪幾類(lèi)?(學(xué)生回答問(wèn)題.)
2.請看屏幕(課件演示三條線(xiàn)段圍成三角形的過(guò)程)。
三條線(xiàn)段圍成三角形后,在三角形內形成了三個(gè)角,(課件分別出現三個(gè)角的弧線(xiàn)),我們把三角形里面的這三個(gè)角分別叫做三角形的內角。
(二)設疑,激發(fā)學(xué)生探究新知的心理
1.請同學(xué)們幫老師畫(huà)一個(gè)三角形,能做到嗎?(激發(fā)學(xué)生主動(dòng)學(xué)習的心理)請聽(tīng)要求,畫(huà)一個(gè)有兩個(gè)內角是直角的三角形,開(kāi)始。(設置矛盾,使學(xué)生在矛盾中去發(fā)現問(wèn)題、探究問(wèn)題。)
學(xué)生安要求畫(huà)三角形.
2.問(wèn):有誰(shuí)畫(huà)出來(lái)啦?
(課件演示):是不是畫(huà)成這個(gè)樣子了?只能畫(huà)兩個(gè)直角。問(wèn)題出現在哪兒呢?這一定有什么奧秘?那就讓我們一起來(lái)研究吧!
二、動(dòng)手操作,探究新知
(一)研究特殊三角形的內角和
1.請看屏幕。(播放課件)熟悉這副三角板嗎?(課件閃動(dòng)其中的一塊三角板)
學(xué)生回答:90°、45°、45°。(課件演示:由三角板抽象出三角形)
這個(gè)三角形各角的度數。它們的和是多少?
學(xué)生回答:是180°。
追問(wèn):你是怎樣知道的?
生:90°+45°+45°=180°。
把三角形三個(gè)內角的度數合起來(lái)就叫三角形的內角和。
板題:三角形內角和
2.(課件演示另一塊三角板的各角的度數。)這個(gè)呢?它的內角和是多少度呢?
90°+60°+30°=180°。
3.從剛才兩個(gè)三角形內角和的計算中,你發(fā)現什么?
這兩個(gè)三角形的內角和都是180°。這兩個(gè)三角形都是直角三角形,并且是特殊的三角形。
(二)研究一般三角形內角和
1.猜一猜。
猜一猜其它三角形的.內角和是多少度呢?同桌互相說(shuō)說(shuō)自己的看法。
2.操作、驗證一般三角形內角和是180°。
(1)小組合作、進(jìn)行探究。
1.所有三角形的內角和究竟是不是180°,你能用什么辦法來(lái)證明,使別人相信呢?那就請四人小組共同研究吧!
2.每個(gè)小組都有不同類(lèi)型的三角形。每種類(lèi)型的三角形都需要驗證,小組活動(dòng)的要求如下:課件顯示
組長(cháng)負責填寫(xiě)表格,組員每人負責量一個(gè)三角形的每個(gè)內角,并記錄下來(lái),最后算出這個(gè)三角形的內角和,把結果告訴組長(cháng).
量一量,完成表格.
三角形的名稱(chēng)
內角和的度數
銳角三角形
直角三角形
(2)小組匯報結果。
請各小組匯報探究結果。
(三)繼續探究
沒(méi)有得到統一的結果。這個(gè)辦法不能使人很信服,怎么辦?還有其它辦法嗎?
引導學(xué)生用拼合的辦法,就是把三角形的三個(gè)內角放在一起,可以拼成一個(gè)平角。
1.用拼合的方法驗證。
小組內完成,活動(dòng)的要求同上.
拼一拼,完成表格.
三角形的名稱(chēng)
是否可以拼成平角
銳角三角形
直角三角形
對角三角形
2.匯報驗證結果。
先驗證銳角三角形,我們得出什么結論?
(銳角三角形的內角拼在一起是一個(gè)平角,所以銳角三角形的內角和是180°。
直角三角形的內角和也是180°。
鈍角三角形的內角和還是180°)。
3.課件演示驗證結果。
請看屏幕,老師也來(lái)驗證一下,是不是跟你們得到的結果一樣?(播放課件)
我們可以得出一個(gè)怎樣的結論?
(三角形的內角和是180°。)
(教師板書(shū):三角形的內角和是180°學(xué)生齊讀一遍。)
為什么用測量計算的方法不能得到統一的結果呢?
(量的不準。有的量角器有誤差。)
三、解決疑問(wèn)。
現在誰(shuí)能說(shuō)說(shuō)不能畫(huà)出有兩個(gè)直角的一個(gè)三角形的原因?(讓學(xué)生體驗成功的喜悅)
(因為三角形的內角和是180°,在一個(gè)三角形中如果有兩個(gè)直角,它的內角和就大于180°。)
在一個(gè)三角形中,有沒(méi)有可能有兩個(gè)鈍角呢?
(不可能。)
追問(wèn):為什么?
(因為兩個(gè)銳角和已經(jīng)超過(guò)了180°。)
問(wèn):那有沒(méi)有可能有兩個(gè)銳角呢?
(有,在一個(gè)三角形中最少有兩個(gè)內角是銳角。)
四、應用三角形的內角和解決問(wèn)題。
1.看圖求出未知角的度數。(知識的直接運用,數學(xué)信息很淺顯)
2.85頁(yè)做一做:
在一個(gè)三角形中,∠1=140度,∠3=35度,求∠2的度數.
3.88頁(yè)第9.10題(數學(xué)信息較為隱藏和生活中的實(shí)際問(wèn)題)
4.89頁(yè)16題.思考題
板書(shū)設計:
三角形內角和
180°180°180°
三角形內角和180°
三角形內角和教學(xué)設計13
【教材分析】
《三角形內角和》是北師大版《數學(xué)》四年級下冊的內容。是在學(xué)生學(xué)習了三角形的概念及特征之后進(jìn)行的,它是掌握多邊形內角和及其他實(shí)際問(wèn)題的基礎,因此,掌握“三角形的內角和是180度”這一規律具有重要意義。教材首先出示了兩個(gè)三角形比內角和這一情境,讓學(xué)生通過(guò)測量、折疊、拼湊等方法,發(fā)現三角形的內角和是180度。教材還安排了“試一試”,“練一練”的內容。已知三角形兩個(gè)內角的度數,求出第三個(gè)角的度數。
【學(xué)生分析】
經(jīng)過(guò)近四年的課改實(shí)驗,孩子們已經(jīng)有了一定的自主探究,合作交流的能力。他們喜歡在實(shí)踐中感悟,在實(shí)踐中發(fā)表自己的見(jiàn)解,對數學(xué)產(chǎn)生了濃厚的興趣。
1、知識方面:學(xué)生已經(jīng)掌握了三角形的概念、分類(lèi),熟悉了鈍角、直角、銳角、平角這些角的知識。
2、能力方面:已具備了初步的動(dòng)手操作能力和探究能力,并且能夠進(jìn)行簡(jiǎn)單的微機操作。
【學(xué)習目標】
知識目標:掌握三角形內角和是180度這一規律,并能實(shí)際應用。
能力目標: 培養學(xué)生主動(dòng)探索、動(dòng)手操作的能力。培養學(xué)生收集、整理、歸納信息的能力。使學(xué)生養成良好的合作習慣。
情感目標: 讓學(xué)生體會(huì )幾何圖形內在的結構美。
【教學(xué)過(guò)程】
一、 情景激趣,質(zhì)疑猜想。
播放動(dòng)畫(huà)片:在圖形王國中,有一天三角形大家庭里為“三角形內角和的大小”爆發(fā)了一場(chǎng)激烈的爭吵。
鈍角三角形大聲叫著(zhù):“我的鈍角大,我的內角和一定比你們的內角和大!变J角三角形也不示弱:“我的銳角雖然比鈍角小,但我的內角和并不比你小!敝苯侨切握f(shuō):“別爭了,三角形的內角和都是180°。我們的內角和是一樣大的!
師:想一想,什么是三角形的三個(gè)內角的和。
生:三角形的三個(gè)內角的度數和。
師:同學(xué)們剛才看了動(dòng)畫(huà)片你們知道誰(shuí)說(shuō)對了嗎?不知道的話(huà)想一想,猜一猜誰(shuí)說(shuō)的對?
學(xué)生進(jìn)行猜想,自由發(fā)言。
。ㄔO計意圖:教師借助多媒體技術(shù)創(chuàng )設問(wèn)題情境,架起數學(xué)學(xué)習與現實(shí)生活,抽象數學(xué)與具體問(wèn)題之間的橋梁,激發(fā)了學(xué)生的學(xué)習興趣。鼓勵學(xué)生主動(dòng)質(zhì)疑猜想是培養學(xué)生學(xué)會(huì )學(xué)習的重要途徑。)
二、自主探究,驗證猜想
師:剛才大部分同學(xué)都猜直角三角形說(shuō)的對。三角形的三個(gè)內角的和都是 180°,你能設法驗證這個(gè)猜想嗎?
生1:能。我量出三角形的三個(gè)內角和度數,加起來(lái)是否接近180°(量的時(shí)候可能會(huì )有些誤差)。
生2:我把三角形的三個(gè)角剪下來(lái)拼一拼是否能拼成一個(gè)平角。
生3:我把三角形的三個(gè)角撕下來(lái),拼一拼是否180°。
生4:我把三角形的三個(gè)角往里折,看一看這三個(gè)角是否折成一個(gè)平角。
……
師:上面你們說(shuō)了不少的驗證猜想的方法,請大家用準備好的材料用你喜歡的方法,動(dòng)手驗證自己的猜想吧。▽W(xué)生把三角形的三個(gè)內角分別標上∠1、∠2、∠3,以免在剪拼時(shí)把內角搞混了。)
學(xué)生邊實(shí)驗邊整理信息,完成實(shí)驗報告單后,學(xué)習小組內進(jìn)行交流討論。
。ㄔO計意圖:驗證猜想為學(xué)生提供了“做數學(xué)”的機會(huì ),讓每個(gè)學(xué)生圍繞自己的猜想、決定自己的探索方向、選擇自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,讓學(xué)生在操作中自主探究數學(xué)知識的產(chǎn)生發(fā)展過(guò)程。驗證自己的猜想,鼓勵學(xué)生用不同的方法進(jìn)行驗證,促進(jìn)學(xué)生創(chuàng )新能力的發(fā)展。)
三、交流評價(jià),歸納結論。
學(xué)生操作驗證,完成實(shí)驗報告單后,利用投影儀展示學(xué)生填寫(xiě)的實(shí)驗報告單。
實(shí)驗報告單
實(shí)驗名稱(chēng)
三角形內角和
實(shí)驗目的'
探究三角形內角和是多少度。
實(shí)驗材料
尺子
剪刀
量角器
銳角三角形紙片
直角三角形紙片
鈍角三角形紙片
我的方法
我的發(fā)現
我的表現
自評
互評
學(xué)生在展示過(guò)程中,充分交流和討論實(shí)驗中各自使用的方法和發(fā)現,教師要對學(xué)生的閃光點(diǎn)及時(shí)進(jìn)行表?yè)P和鼓勵。
師生共同歸納,得出結論:
三角形內角和等于180°
。ㄔO計意圖:各學(xué)習小組匯報自己的驗證過(guò)程,展示探究的成果。對學(xué)生探索發(fā)現的方法、策略進(jìn)行總結歸納,集思廣益,取長(cháng)補短達到共識。在交流、歸納過(guò)程中,及時(shí)肯定其中的閃光點(diǎn)給予表?yè)P和鼓勵,使他們體驗到成功的愉悅,促使他們獲得更大的成功。)
四、分層練習,鞏固創(chuàng )新。
、僬n件出示:
師:這個(gè)三角形是什么三角形?知道幾個(gè)內角的度數?
生:直角三角形,知道一個(gè)角是30°,還有一個(gè)角是90°!螦=90°-30°=60°。
師:根據今天所學(xué)的知識,誰(shuí)能求出A的度數?大家自己試一試。
學(xué)生做完后反饋講評時(shí)讓學(xué)生說(shuō)說(shuō)自己的方法。
生1:用三角形內角的和(180°)減去30°再減去90°,算出∠A是60°。
∠A=180°-30°-90°=60°。
生2:先用30°加上90°得120°再用180°減去120°也可得∠A =60°。
、趯W(xué)生完成完成P29的第一題。
引導學(xué)生按照前面的方法獨立完成,教師巡視,集體訂正。
、鄄乱徊氯切蔚牧硗鈨蓚(gè)角可能各是多少度。
同桌同學(xué)互相說(shuō)一說(shuō)。(答案不唯一)
、苄〗M操作探究活動(dòng)。
讓學(xué)生剪出幾個(gè)不同的四邊形,按表中所給的方法以做一做,并填一填。
方 法
四邊形內角和
用量角器量出每個(gè)內角的度數,并相加。
把四邊形四個(gè)角剪下來(lái),拼在一起。
把四邊形分為兩個(gè)三角形。
填表后讓學(xué)生想一想、互相說(shuō)一說(shuō),四邊形內角和是多少度?
。ㄔO計意圖:引導學(xué)生將探究學(xué)習活動(dòng)中所獲得的結論經(jīng)驗和方法運用于探索解決簡(jiǎn)單的實(shí)際問(wèn)題。組織學(xué)生參與具有趣味性、操作性和開(kāi)放性的練習活動(dòng),讓學(xué)生在鞏固練習中培養動(dòng)手能力、實(shí)踐能力和創(chuàng )新思維。)
三角形內角和教學(xué)設計14
【教材分析】:
新課標把三角形的內角和作為第二學(xué)段中三角形的一個(gè)重要組成部分。本課是安排在三角形的特性及分類(lèi)之后進(jìn)行的,它是學(xué)生以后學(xué)習多邊形的內角和及解決其它實(shí)際問(wèn)題的基礎。教材所呈現的內容,不但重視體現知識的形成過(guò)程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間,安排了量一量、算一算和剪一剪、拼一拼兩個(gè)實(shí)驗操作活動(dòng),意圖使學(xué)生在動(dòng)手操作、合作交流中發(fā)現并形成結論。
【教學(xué)目標】
知識與技能
1.理解和掌握三角形的內角和是180度。
2.運用三角形的內角和的知識解決實(shí)際問(wèn)題。
過(guò)程與方法
經(jīng)歷三角形的內角和的探究過(guò)程,體驗“發(fā)現——驗證——應用”的學(xué)習模式。
情感態(tài)度與價(jià)值觀(guān)
在學(xué)習活動(dòng)中,滲透探究知識的方法,提高學(xué)生學(xué)習的能力,培養學(xué)生的創(chuàng )新精神和實(shí)踐能力。
【教學(xué)重點(diǎn)】
重點(diǎn):理解和掌握三角形的內角和是180度。
突破方法:引導學(xué)生用測量或剪拼的方法探究三角形的內角和。合理猜想,測量驗證。
【教學(xué)難點(diǎn)】
用三角形的內角和解決實(shí)際問(wèn)題。
突破方法:推理分析計算。運用推理,正確計算。
教法:質(zhì)疑
【教學(xué)方法】
引導,演示講解。
學(xué)法:實(shí)踐操作,小組合作。
【教學(xué)準備】:
多媒體課件,銳角,直角,鈍角三角形的硬紙片,剪刀。
【教學(xué)時(shí)間】
一課時(shí)
【教學(xué)過(guò)程】
一.創(chuàng )設情境,引入新課
師:同學(xué)們,我們這倆天學(xué)習了三角形的分類(lèi),通過(guò)對角的分類(lèi),我們能夠分成幾類(lèi)三角形?
生:三類(lèi),分別為銳角三角形,直角三角形,鈍角三角形。
師:嗯,真好,那么對邊的分類(lèi)呢?
生:倆類(lèi),分別為等腰三角形,等邊三角形。
師:老師想讓同學(xué)們幫老師畫(huà)一個(gè)三角形,能做到嗎?
生:能。
師:請聽(tīng)要求,畫(huà)一個(gè)有一個(gè)角是直角的三角形,開(kāi)始。(學(xué)生動(dòng)手操作)
師:再來(lái)一個(gè)可以嗎?請聽(tīng)要求,畫(huà)一個(gè)有倆個(gè)角是直角的三角形,開(kāi)始。
生:不能畫(huà),因為當倆個(gè)角是90度的時(shí)候,倆個(gè)頂點(diǎn)在一條線(xiàn)上,不能組成封閉圖形。
師:回答的真好,那么為什么會(huì )出現這種情況呢?是因為三角形中的角而引起的,那么同學(xué)們想不想知道其中的秘密呢?
生:想。
師:好,那么我們今天就一起來(lái)學(xué)習“三角形的內角和”(出示板書(shū))
。ㄔO計意圖:通過(guò)學(xué)生的動(dòng)手操作,發(fā)現問(wèn)題所在,這樣更能調動(dòng)學(xué)生的學(xué)習興趣,為了更好的學(xué)習這節課做鋪墊.)
二.探究新知
師:昨天呢,老師讓同學(xué)們一人做一個(gè)自己喜歡的三角形,請同學(xué)們拿出來(lái),看一看你們做的是什么樣子的三角形。
生1:銳角三角形。
生2:直角三角形。
生3:鈍角三角形。
師:嗯,我們在上個(gè)星期學(xué)習了三角形的各部分名稱(chēng),誰(shuí)能幫我告訴下同學(xué)們,角在哪里呢?
生:里面的三個(gè)角,可以用角1,角2,角3來(lái)表示。
師:嗯,這三個(gè)角我們也可以說(shuō)成是三角形的內角,好了,今天我們既然學(xué)習三角形的內角和,也就是求成這三個(gè)角的度數和,你們猜一猜三角形內角和的度數是多少呢?
生:三角形的內角和是180度。
師:那么我們能不能一起用一些好的`辦法來(lái)驗證一下呢?
生1:我們可以用量角器分別量出這三個(gè)內角的度數,然后再加在一起就可以求出三角形內角的和了。
師:還有其他的辦法嗎?
生2:我們可以用剪子剪下三個(gè)角,然后把它們拼在一起,看看這三個(gè)角拼在一起之后能夠呈現出什么樣子的角。
生3:我可以用折的方法,把三個(gè)角的度數折在一起。
師:同學(xué)們說(shuō)的真好,既然有這么多的方法,到底哪個(gè)方法好呢?我們一起來(lái)研究一下,我把全班分成倆個(gè)小組,一隊用量的方法,一隊用拼的方法,看看哪個(gè)小組做的又對又快,開(kāi)始。
。ㄔO計意圖:通過(guò)學(xué)生的動(dòng)手操作,合作交流,真正的把課堂還給學(xué)生,讓學(xué)生成為學(xué)習的主體,教師適時(shí)引導,突出學(xué)生的學(xué)習的能力與價(jià)值。)
三.總結任意三角形的內角和是180度并做適當練習。
四.板書(shū)設計
三角形的內角和
量一量銳角三角形:75度+48度+58度=181度
直角三角形:90度+45度+45度=180度
鈍角三角形:120度+38度+22度=180度
拼一拼圖形呈現
折一折圖形呈現
三角形內角和教學(xué)設計15
知識與技能
1、通過(guò)小組合作,運用直觀(guān)操作的方法,探索并發(fā)現三角形內角和等于180。能應用三角形內角和的性質(zhì)解決一些簡(jiǎn)單問(wèn)題。
2、經(jīng)歷親自動(dòng)手實(shí)踐、探索三角形內角和的過(guò)程,體會(huì )運用“量一量”、“算一算”、“拼一拼”、“折一折”進(jìn)行驗證的數學(xué)思想方法,提高動(dòng)手操作能力和數學(xué)思考能力。
情感態(tài)度與價(jià)值觀(guān)
3、使學(xué)生在數學(xué)活動(dòng)中獲得成功的體驗,感受探索數學(xué)規律的樂(lè )趣。培養學(xué)生的創(chuàng )新意識、探索精神和實(shí)踐能力,在學(xué)生親自動(dòng)手實(shí)踐和歸納中,感受理性的美。
教學(xué)重點(diǎn):
1、探索和發(fā)現三角形三個(gè)內角和的度數和等于180o。
2、已知三角形的兩個(gè)角的度數,會(huì )求出第三個(gè)角的度數。
教學(xué)難點(diǎn):
已知三角形的兩個(gè)角的度數,會(huì )求出第三個(gè)角的'度數。
方法與過(guò)程
教法:主動(dòng)探究法、實(shí)驗操作法。
學(xué)法:小組合作交流法
教學(xué)準備:小黑板、學(xué)生、老師準備幾個(gè)形狀不同的三角形、量角器。
教學(xué)課時(shí):1課時(shí)
教學(xué)過(guò)程
一、預習檢查
說(shuō)一說(shuō)在預習課中操作的感受,應注意哪些問(wèn)題,三角形的內角和等于多少度? 組內交流訂正。
二、情景導入呈現目標
故事引入。一天,大三角形對小三角形說(shuō):“我的個(gè)頭大,所以我的內角和一定比你的大!毙∪切魏懿桓市牡卣f(shuō):“是這樣的嗎?”揭示課題,出示目標。產(chǎn)生質(zhì)疑,引入新課。
三、探究新知
自主學(xué)習
1、活動(dòng)一、比一比2、活動(dòng)二、量一量
。1)什么是內角?
。2)如何得到一個(gè)三角形的內角和?
。3)小組活動(dòng),每組同學(xué)分別畫(huà)出大小,形狀不同的若干個(gè)三角形。分別量出三個(gè)內角的度數,并求出它們的和。
。4)填寫(xiě)小組活動(dòng)記錄表。發(fā)現大小,形狀不同的每個(gè)三角形,三個(gè)內角的度數和都接近度。
3、說(shuō)一說(shuō),做一做。
。1)我們把三個(gè)角撕下來(lái),再拼在一起,看一看會(huì )是怎樣的。
。2)把三個(gè)角折疊在一起,,三個(gè)角在一條直線(xiàn)上。從而得到三角形三個(gè)內角和等于()度。
四、當堂訓練(小黑板出示內容)
1、三角形的內角和是()°,一個(gè)等腰三角形,它的一個(gè)底角是26°,它的頂角是()。
2、長(cháng)5厘米,8厘米,()厘米的三根小棒不能?chē)梢粋(gè)三角形。
3、三角形具有()性。
4、一個(gè)三角形中有一個(gè)角是45°,另一個(gè)角是它的2倍,第三個(gè)角是(),這是一個(gè)()三角形。
5、按角的大小,三角形可以分為()三角形、()三角形、()三角形。
6、交流學(xué)案第三題!∠泉毩⒆,最后組內交流。
五、點(diǎn)撥升華
任意三角形三個(gè)角的度數和等于180度。獨立思索小組交流總結方法教師點(diǎn)撥。
六、課堂總結
通過(guò)這節課的學(xué)習,你有什么新的收獲或者還有什么疑問(wèn)?先小組內說(shuō)一說(shuō),最后班上交流。
七、拓展提高
媽媽給淘氣買(mǎi)了一個(gè)等腰三角形的風(fēng)箏。它的頂角是40°,它的一底角是多少? 先獨立做,最后組內交流。
板書(shū)設計:
三角形的內角和
測量三個(gè)角的度數求和:結論:
教學(xué)反思:三角形內角和等于180°,對于大多數同學(xué)來(lái)說(shuō)并不是新知識。因為在此之前學(xué)生已經(jīng)運用過(guò)這一知識。因此,我覺(jué)得這一堂課的重點(diǎn)不是讓學(xué)生記住這一結論,也不是怎樣運用它去解結問(wèn)題。而是讓學(xué)生證明這一結論,即要讓學(xué)生親歷探索過(guò)程并在探索中驗證。在教學(xué)中,通過(guò)豐富的材料讓學(xué)生動(dòng)手操作,通過(guò)量、撕拼、折拼等實(shí)驗活動(dòng),讓學(xué)生得到的不僅僅是三角形內角和的知識,更重要的是學(xué)到了怎樣由已知知識探索未知的思維方式與方法,激發(fā)了他們主動(dòng)探索知識的欲望。通過(guò)多種實(shí)驗進(jìn)行操作驗證也讓學(xué)生明白了只要善于思考,善于動(dòng)手就能找到解決問(wèn)題的方法。
當然,在教學(xué)中也還有一些不順利的地方,比如一些動(dòng)手能力差的學(xué)生未能及時(shí)跟進(jìn),對于方法不對的學(xué)生未能及時(shí)指導和幫助等。但是本堂課采用這樣的方式展開(kāi)教學(xué)是學(xué)生喜歡的也是有成效的。
【三角形內角和教學(xué)設計】相關(guān)文章:
三角形內角和教學(xué)設計02-13
《三角形的內角和》教學(xué)設計05-08
《三角形內角和》教學(xué)設計05-03
《三角形內角和》教學(xué)設計范文03-01
《三角形內角和》的教學(xué)設計范文02-07
(必備)三角形內角和教學(xué)設計12-18
三角形內角和教學(xué)設計范文04-13
《三角形內角和》教學(xué)設計15篇05-08