高二數學(xué)的選修1知識點(diǎn)總結

時(shí)間:2024-10-16 11:54:50 歐敏 總結范文 我要投稿
  • 相關(guān)推薦

高二數學(xué)的選修1知識點(diǎn)總結(通用7篇)

  在平時(shí)的學(xué)習中,很多人都經(jīng)常追著(zhù)老師們要知識點(diǎn)吧,知識點(diǎn)在教育實(shí)踐中,是指對某一個(gè)知識的泛稱(chēng)。你知道哪些知識點(diǎn)是真正對我們有幫助的嗎?以下是小編為大家整理的高二數學(xué)的選修1知識點(diǎn)總結范本,希望對大家有所幫助。

高二數學(xué)的選修1知識點(diǎn)總結(通用7篇)

  高二數學(xué)的選修1知識點(diǎn)總結 1

  一、直線(xiàn)與圓:

  1、直線(xiàn)的傾斜角 的范圍是

  在平面直角坐標系中,對于一條與 軸相交的直線(xiàn) ,如果把 軸繞著(zhù)交點(diǎn)按逆時(shí)針?lè )较蜣D到和直線(xiàn) 重合時(shí)所轉的最小正角記為, 就叫做直線(xiàn)的傾斜角。當直線(xiàn) 與 軸重合或平行時(shí),規定傾斜角為0;

  2、斜率:已知直線(xiàn)的傾斜角為α,且α≠90°,則斜率k=tanα.

  過(guò)兩點(diǎn)(x1,y1),(x2,y2)的直線(xiàn)的斜率k=( y2-y1)/(x2-x1),另外切線(xiàn)的斜率用求導的方法。

  3、直線(xiàn)方程:⑴點(diǎn)斜式:直線(xiàn)過(guò)點(diǎn) 斜率為 ,則直線(xiàn)方程為 ,

 、菩苯厥剑褐本(xiàn)在 軸上的截距為 和斜率,則直線(xiàn)方程為

  4、 , ,① ∥ , ; ② .

  直線(xiàn) 與直線(xiàn) 的位置關(guān)系:

  (1)平行 A1/A2=B1/B2 注意檢驗(2)垂直 A1A2+B1B2=0

  5、點(diǎn) 到直線(xiàn) 的距離公式 ;

  兩條平行線(xiàn) 與 的距離是

  6、圓的標準方程: .⑵圓的一般方程:

  注意能將標準方程化為一般方程

  7、過(guò)圓外一點(diǎn)作圓的切線(xiàn),一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線(xiàn).

  8、直線(xiàn)與圓的位置關(guān)系,通常轉化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構造直角三角形解決弦長(cháng)問(wèn)題.① 相離 ② 相切 ③ 相交

  9、解決直線(xiàn)與圓的關(guān)系問(wèn)題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長(cháng)、弦心距構成直角三角形) 直線(xiàn)與圓相交所得弦長(cháng)

  二、圓錐曲線(xiàn)方程:

  1、橢圓: ①方程 (a>b>0)注意還有一個(gè);②定義: PF1+PF2=2a>2c; ③ e= ④長(cháng)軸長(cháng)為2a,短軸長(cháng)為2b,焦距為2c; a2=b2+c2 ;

  2、雙曲線(xiàn):①方程 (a,b>0) 注意還有一個(gè);②定義: PF1-PF2=2a<2c; ③e= ;④實(shí)軸長(cháng)為2a,虛軸長(cháng)為2b,焦距為2c;漸進(jìn)線(xiàn) 或 c2=a2+b2

  3、拋物線(xiàn) :①方程y2=2px注意還有三個(gè),能區別開(kāi)口方向; ②定義:PF=d焦點(diǎn)F( ,0),準線(xiàn)x=- ;③焦半徑 ; 焦點(diǎn)弦=x1+x2+p;

  4、直線(xiàn)被圓錐曲線(xiàn)截得的弦長(cháng)公式:

  5、注意解析幾何與向量結合問(wèn)題:1、 , . (1) ;(2) .

  2、數量積的定義:已知兩個(gè)非零向量a和b,它們的夾角為θ,則數量abcosθ叫做a與b的數量積,記作a·b,即

  3、模的計算:a= . 算?梢韵人阆蛄康钠椒

  4、向量的運算過(guò)程中完全平方公式等照樣適用:

  三、直線(xiàn)、平面、簡(jiǎn)單幾何體:

  1、學(xué)會(huì )三視圖的分析:

  2、斜二測畫(huà)法應注意的地方:

  (1)在已知圖形中取互相垂直的軸Ox、Oy。畫(huà)直觀(guān)圖時(shí),把它畫(huà)成對應軸 ox、oy、使∠x(chóng)oy=45°(或135° ); (2)平行于x軸的線(xiàn)段長(cháng)不變,平行于y軸的線(xiàn)段長(cháng)減半.(3)直觀(guān)圖中的45度原圖中就是90度,直觀(guān)圖中的90度原圖一定不是90度.

  3、表(側)面積與體積公式:

 、胖w:①表面積:S=S側+2S底;②側面積:S側= ;③體積:V=S底h

 、棋F體:①表面積:S=S側+S底;②側面積:S側= ;③體積:V= S底h:

 、桥_體①表面積:S=S側+S上底S下底②側面積:S側=

 、惹蝮w:①表面積:S= ;②體積:V=

  4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書(shū)寫(xiě)

  (1)直線(xiàn)與平面平行:①線(xiàn)線(xiàn)平行線(xiàn)面平行;②面面平行 線(xiàn)面平行。

  (2)平面與平面平行:①線(xiàn)面平行面面平行。

  (3)垂直問(wèn)題:線(xiàn)線(xiàn)垂直 線(xiàn)面垂直 面面垂直。核心是線(xiàn)面垂直:垂直平面內的兩條相交直線(xiàn)

  5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

 、女惷嬷本(xiàn)所成角的求法:平移法:平移直線(xiàn),構造三角形;

 、浦本(xiàn)與平面所成的角:直線(xiàn)與射影所成的角

  四、導數:

  1、導數的定義: 在點(diǎn) 處的導數記作 .

  2. 導數的幾何物理意義:曲線(xiàn) 在點(diǎn) 處切線(xiàn)的斜率

 、賙=f/(x0)表示過(guò)曲線(xiàn)y=f(x)上P(x0,f(x0))切線(xiàn)斜率。V=s/(t) 表示即時(shí)速度。a=v/(t) 表示加速度。

  3.常見(jiàn)函數的導數公式: ① ;② ;③ ;

  4.導數的四則運算法則:

  5.導數的應用:

  (1)利用導數判斷函數的單調性:設函數 在某個(gè)區間內可導,如果 ,那么 為增函數;如果 ,那么為減函數;

  注意:如果已知 為減函數求字母取值范圍,那么不等式 恒成立。

  (2)求極值的步驟:

 、偾髮 ;

 、谇蠓匠 的根;

 、哿斜恚簷z驗 在方程 根的左右的`符號,如果左正右負,那么函數 在這個(gè)根處取得極大值;如果左負右正,那么函數 在這個(gè)根處取得極小值;

  (3)求可導函數最大值與最小值的步驟:

  ?求 的根; ?把根與區間端點(diǎn)函數值比較,最大的為最大值,最小的是最小值。

  五、常用邏輯用語(yǔ):

  1、四種命題:

 、旁}:若p則q;⑵逆命題:若q則p;⑶否命題:若 p則 q;⑷逆否命題:若 q則 p

  注:

  1、原命題與逆否命題等價(jià);逆命題與否命題等價(jià)。判斷命題真假時(shí)注意轉化。

  2、注意命題的否定與否命題的區別:命題否定形式是 ;否命題是 .命題“ 或 ”的否定是“ 且 ”;“ 且 ”的否定是“ 或 ”.

  3、邏輯聯(lián)結詞:

 、徘(and) :命題形式 p q; p q p q p q p

 、苹(or):命題形式 p q; 真 真 真 真 假

 、欠(not):命題形式 p . 真 假 假 真 假

  假 真 假 真 真

  假 假 假 假 真

  “或命題”的真假特點(diǎn)是“一真即真,要假全假”;

  “且命題”的真假特點(diǎn)是“一假即假,要真全真”;

  “非命題”的真假特點(diǎn)是“一真一假”

  4、充要條件

  由條件可推出結論,條件是結論成立的充分條件;由結論可推出條件,則條件是結論成立的必要條件。

  5、全稱(chēng)命題與特稱(chēng)命題:

  短語(yǔ)“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱(chēng)量詞,并用符號表示。含有全體量詞的命題,叫做全稱(chēng)命題。

  短語(yǔ)“有一個(gè)”或“有些”或“至少有一個(gè)”在陳述中表示所述事物的個(gè)體或部分,邏輯中通常叫做存在量詞,并用符號 表示,含有存在量詞的命題,叫做存在性命題。

  全稱(chēng)命題p: ; 全稱(chēng)命題p的否定 p:。

  特稱(chēng)命題p: ; 特稱(chēng)命題p的否定 p:。

  高二數學(xué)的選修1知識點(diǎn)總結 2

  1.1柱、錐、臺、球的結構特征

  1.2空間幾何體的三視圖和直觀(guān)圖

  11三視圖:

  正視圖:從前往后

  側視圖:從左往右

  俯視圖:從上往下

  22畫(huà)三視圖的原則:

  長(cháng)對齊、高對齊、寬相等

  33直觀(guān)圖:斜二測畫(huà)法

  44斜二測畫(huà)法的步驟:

  (1).平行于坐標軸的線(xiàn)依然平行于坐標軸;

  (2).平行于y軸的線(xiàn)長(cháng)度變半,平行于x,z軸的線(xiàn)長(cháng)度不變;

  (3).畫(huà)法要寫(xiě)好。

  5用斜二測畫(huà)法畫(huà)出長(cháng)方體的步驟:(1)畫(huà)軸(2)畫(huà)底面(3)畫(huà)側棱(4)成圖

  1.3空間幾何體的表面積與體積

  (一)空間幾何體的表面積

  1棱柱、棱錐的表面積:各個(gè)面面積之和

  2圓柱的表面積3圓錐的表面積

  4圓臺的表面積

  5球的表面積

  (二)空間幾何體的體積

  1柱體的體積

  2錐體的體積

  3臺體的體積

  4球體的體積

  高二數學(xué)必修二知識點(diǎn):直線(xiàn)與平面的位置關(guān)系

  2.1空間點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系

  2.1.1

  1平面含義:平面是無(wú)限延展的

  2平面的畫(huà)法及表示

  (1)平面的畫(huà)法:水平放置的平面通常畫(huà)成一個(gè)平行四邊形,銳角畫(huà)成450,且橫邊畫(huà)成鄰邊的2倍長(cháng)(如圖)

  (2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個(gè)頂點(diǎn)或者相對的兩個(gè)頂點(diǎn)的大寫(xiě)字母來(lái)表示,如平面AC、平面ABCD等。

  3三個(gè)公理:

  (1)公理1:如果一條直線(xiàn)上的兩點(diǎn)在一個(gè)平面內,那么這條直線(xiàn)在此平面內

  符號表示為

  A∈L

  B∈L=>Lα

  A∈α

  B∈α

  公理1作用:判斷直線(xiàn)是否在平面內

  (2)公理2:過(guò)不在一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面。

  符號表示為:A、B、C三點(diǎn)不共線(xiàn)=>有且只有一個(gè)平面α,

  使A∈α、B∈α、C∈α。

  公理2作用:確定一個(gè)平面的依據。

  (3)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn)。

  符號表示為:P∈α∩β=>α∩β=L,且P∈L

  公理3作用:判定兩個(gè)平面是否相交的依據

  2.1.2空間中直線(xiàn)與直線(xiàn)之間的位置關(guān)系

  1空間的兩條直線(xiàn)有如下三種關(guān)系:

  共面直線(xiàn)

  相交直線(xiàn):同一平面內,有且只有一個(gè)公共點(diǎn);

  平行直線(xiàn):同一平面內,沒(méi)有公共點(diǎn);

  異面直線(xiàn):不同在任何一個(gè)平面內,沒(méi)有公共點(diǎn)。

  2公理4:平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行。

  符號表示為:設a、b、c是三條直線(xiàn)

  a∥b

  c∥b

  強調:公理4實(shí)質(zhì)上是說(shuō)平行具有傳遞性,在平面、空間這個(gè)性質(zhì)都適用。

  公理4作用:判斷空間兩條直線(xiàn)平行的依據。

  3等角定理:空間中如果兩個(gè)角的兩邊分別對應平行,那么這兩個(gè)角相等或互補

  4注意點(diǎn):

 、賏與b所成的角的大小只由a、b的.相互位置來(lái)確定,與O的選擇無(wú)關(guān),為了簡(jiǎn)便,點(diǎn)O一般取在兩直線(xiàn)中的一條上;

 、趦蓷l異面直線(xiàn)所成的角θ∈(0,);

 、郛攦蓷l異面直線(xiàn)所成的角是直角時(shí),我們就說(shuō)這兩條異面直線(xiàn)互相垂直,記作a⊥b;

 、軆蓷l直線(xiàn)互相垂直,有共面垂直與異面垂直兩種情形;

 、萦嬎阒,通常把兩條異面直線(xiàn)所成的角轉化為兩條相交直線(xiàn)所成的角。

  2.1.3—2.1.4空間中直線(xiàn)與平面、平面與平面之間的位置關(guān)系

  1、直線(xiàn)與平面有三種位置關(guān)系:

  (1)直線(xiàn)在平面內——有無(wú)數個(gè)公共點(diǎn)

  (2)直線(xiàn)與平面相交——有且只有一個(gè)公共點(diǎn)

  (3)直線(xiàn)在平面平行——沒(méi)有公共點(diǎn)

  指出:直線(xiàn)與平面相交或平行的情況統稱(chēng)為直線(xiàn)在平面外,可用aα來(lái)表示

  aαa∩α=Aa∥α

  2.2.直線(xiàn)、平面平行的判定及其性質(zhì)

  2.2.1直線(xiàn)與平面平行的判定

  1、直線(xiàn)與平面平行的判定定理:平面外一條直線(xiàn)與此平面內的一條直線(xiàn)平行,則該直線(xiàn)與此平面平行。

  簡(jiǎn)記為:線(xiàn)線(xiàn)平行,則線(xiàn)面平行。

  符號表示:

  aα

  bβ=>a∥α

  a∥b

  2.2.2平面與平面平行的判定

  1、兩個(gè)平面平行的判定定理:一個(gè)平面內的兩條交直線(xiàn)與另一個(gè)平面平行,則這兩個(gè)平面平行。

  符號表示:

  aβ

  bβ

  a∩b=Pβ∥α

  a∥α

  b∥α

  2、判斷兩平面平行的方法有三種:

  (1)用定義;

  (2)判定定理;

  (3)垂直于同一條直線(xiàn)的兩個(gè)平面平行。

  2.2.3—2.2.4直線(xiàn)與平面、平面與平面平行的性質(zhì)

  1、定理:一條直線(xiàn)與一個(gè)平面平行,則過(guò)這條直線(xiàn)的任一平面與此平面的交線(xiàn)與該直線(xiàn)平行。

  簡(jiǎn)記為:線(xiàn)面平行則線(xiàn)線(xiàn)平行。

  符號表示:

  a∥α

  aβa∥b

  α∩β=b

  作用:利用該定理可解決直線(xiàn)間的平行問(wèn)題。

  2、定理:如果兩個(gè)平面同時(shí)與第三個(gè)平面相交,那么它們的交線(xiàn)平行。

  符號表示:

  α∥β

  α∩γ=aa∥b

  β∩γ=b

  作用:可以由平面與平面平行得出直線(xiàn)與直線(xiàn)平行

  2.3直線(xiàn)、平面垂直的判定及其性質(zhì)

  2.3.1直線(xiàn)與平面垂直的判定

  1、定義

  如果直線(xiàn)L與平面α內的任意一條直線(xiàn)都垂直,我們就說(shuō)直線(xiàn)L與平面α互相垂直,記作L⊥α,直線(xiàn)L叫做平面α的垂線(xiàn),平面α叫做直線(xiàn)L的垂面。直線(xiàn)與平面垂直時(shí),它們公共點(diǎn)P叫做垂足。

  2、判定定理:一條直線(xiàn)與一個(gè)平面內的兩條相交直線(xiàn)都垂直,則該直線(xiàn)與此平面垂直。

  注意點(diǎn):a)定理中的“兩條相交直線(xiàn)”這一條件不可忽視;

  b)定理體現了“直線(xiàn)與平面垂直”與“直線(xiàn)與直線(xiàn)垂直”互相轉化的數學(xué)思想。

  2.3.2平面與平面垂直的判定

  1、二面角的概念:表示從空間一直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形

  2、二面角的記法:二面角α-l-β或α-AB-β

  3、兩個(gè)平面互相垂直的判定定理:一個(gè)平面過(guò)另一個(gè)平面的垂線(xiàn),則這兩個(gè)平面垂直。

  2.3.3—2.3.4直線(xiàn)與平面、平面與平面垂直的性質(zhì)

  1、定理:垂直于同一個(gè)平面的兩條直線(xiàn)平行。

  2性質(zhì)定理:兩個(gè)平面垂直,則一個(gè)平面內垂直于交線(xiàn)的直線(xiàn)與另一個(gè)平面垂直。

  高二數學(xué)的選修1知識點(diǎn)總結 3

  基本概念

  公理1:如果一條直線(xiàn)上的兩點(diǎn)在一個(gè)x面內,那么這條直線(xiàn)上的所有的點(diǎn)都在這個(gè)x面內。

  公理2:如果兩個(gè)x面有一個(gè)公共點(diǎn),那么它們有且只有一條通過(guò)這個(gè)點(diǎn)的公共直線(xiàn)。

  公理3:過(guò)不在同一條直線(xiàn)上的三個(gè)點(diǎn),有且只有一個(gè)x面。

  推論1:經(jīng)過(guò)一條直線(xiàn)和這條直線(xiàn)外一點(diǎn),有且只有一個(gè)x面。

  推論2:經(jīng)過(guò)兩條相交直線(xiàn),有且只有一個(gè)x面。

  推論3:經(jīng)過(guò)兩條x行直線(xiàn),有且只有一個(gè)x面。

  公理4:x行于同一條直線(xiàn)的兩條直線(xiàn)互相x行。

  等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別x行并且方向相同,那么這兩個(gè)角相等。

  簡(jiǎn)單隨機抽樣的定義:

  一般地,設一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內的各個(gè)個(gè)體被抽到的機會(huì )都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機抽樣。

  簡(jiǎn)單隨機抽樣的`特點(diǎn):

  (1)用簡(jiǎn)單隨機抽樣從含有N個(gè)個(gè)體的總體中抽取一個(gè)容量為n的樣本時(shí),每次抽取一個(gè)個(gè)體時(shí)任一個(gè)體被抽到的概率為;在整個(gè)抽樣過(guò)程中各個(gè)個(gè)體被抽到的概率為:

  (2)簡(jiǎn)單隨機抽樣的特點(diǎn)是,逐個(gè)抽取,且各個(gè)個(gè)體被抽到的概率相等;

  (3)簡(jiǎn)單隨機抽樣方法,體現了抽樣的客觀(guān)性與公平性,是其他更復雜抽樣方法的基礎。

  (4)簡(jiǎn)單隨機抽樣是不放回抽樣;它是逐個(gè)地進(jìn)行抽取;它是一種等概率抽樣

  簡(jiǎn)單抽樣常用方法:

  (1)抽簽法:先將總體中的所有個(gè)體(共有N個(gè))編號(號碼可從1到N),并把號碼寫(xiě)在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí)每次從中抽一個(gè)號簽,連續抽取n次,就得到一個(gè)容量為n的樣本適用范圍:總體的個(gè)體數不多時(shí)優(yōu)點(diǎn):抽簽法簡(jiǎn)便易行,當總體的個(gè)體數不太多時(shí)適宜采用抽簽法。

  (2)隨機數表法:隨機數表抽樣“三步曲”:第一步,將總體中的個(gè)體編號;第二步,選定開(kāi)始的數字;第三步,獲取樣本號碼概率。

  高二數學(xué)的選修1知識點(diǎn)總結 4

  等差數列

  對于一個(gè)數列{an},如果任意相鄰兩項之差為一個(gè)常數,那么該數列為等差數列,且稱(chēng)這一定值差為公差,記為d;從第一項a1到第n項an的總和,記為Sn。

  那么,通項公式為,其求法很重要,利用了“疊加原理”的思想:

  將以上n—1個(gè)式子相加,便會(huì )接連消去很多相關(guān)的項,最終等式左邊余下an,而右邊則余下a1和n—1個(gè)d,如此便得到上述通項公式。

  此外,數列前n項的和,其具體推導方式較簡(jiǎn)單,可用以上類(lèi)似的疊加的方法,也可以采取迭代的方法,在此,不再復述。

  值得說(shuō)明的是,前n項的和Sn除以n后,便得到一個(gè)以a1為首項,以d/2為公差的新數列,利用這一特點(diǎn)可以使很多涉及Sn的數列問(wèn)題迎刃而解。

  等比數列

  對于一個(gè)數列{an},如果任意相鄰兩項之商(即二者的比)為一個(gè)常數,那么該數列為等比數列,且稱(chēng)這一定值商為公比q;從第一項a1到第n項an的總和,記為T(mén)n。

  那么,通項公式為(即a1乘以q的`(n—1)次方,其推導為“連乘原理”的思想:

  a2=a1Xq,

  a3=a2Xq,

  a4=a3Xq,

  an=an—1Xq,

  將以上(n—1)項相乘,左右消去相應項后,左邊余下an,右邊余下a1和(n—1)個(gè)q的乘積,也即得到了所述通項公式。

  此外,當q=1時(shí)該數列的前n項和Tn=a1Xn

  當q≠1時(shí)該數列前n項的和Tn=a1X(1—q^(n))/(1—q)。

  高二數學(xué)的選修1知識點(diǎn)總結 5

  在中國古代把數學(xué)叫算術(shù),又稱(chēng)算學(xué),最后才改為數學(xué)。

  1.任意角

 。1)角的分類(lèi):

 、侔葱D方向不同分為正角、負角、零角。

 、诎唇K邊位置不同分為象限角和軸線(xiàn)角。

 。2)終邊相同的角:

  終邊與角相同的角可寫(xiě)成+k360(kZ)。

 。3)弧度制:

 、1弧度的角:把長(cháng)度等于半徑長(cháng)的弧所對的圓心角叫做1弧度的角。

 、谝幎ǎ赫堑幕《葦禐檎龜,負角的弧度數為負數,零角的弧度數為零||=,l是以角作為圓心角時(shí)所對圓弧的長(cháng),r為半徑。

 、塾没《茸鰡挝粊(lái)度量角的制度叫做弧度制。比值與所取的r的大小無(wú)關(guān),僅與角的大小有關(guān)。

 、芑《扰c角度的換算:360弧度;180弧度。

 、莼¢L(cháng)公式:l=||r,扇形面積公式:S扇形=lr=||r2.

  2.任意角的三角函數

 。1)任意角的三角函數定義:

  設是一個(gè)任意角,角的終邊與單位圓交于點(diǎn)P(x,y),那么角的正弦、余弦、正切分別是:sin =y,cos =x,tan =,它們都是以角為自變量,以單位圓上點(diǎn)的坐標或坐標的比值為函數值的函數。

 。2)三角函數在各象限內的符號口訣是:一全正、二正弦、三正切、四余弦。

  3.三角函數線(xiàn)

  設角的`頂點(diǎn)在坐標原點(diǎn),始邊與x軸非負半軸重合,終邊與單位圓相交于點(diǎn)P,過(guò)P作PM垂直于x軸于M。由三角函數的定義知,點(diǎn)P的坐標為(cos_,sin_),即P(cos_,sin_),其中cos =OM,sin =MP,單位圓與x軸的正半軸交于點(diǎn)A,單位圓在A(yíng)點(diǎn)的切線(xiàn)與的終邊或其反向延長(cháng)線(xiàn)相交于點(diǎn)T,則tan =AT。我們把有向線(xiàn)段OM、MP、AT叫做的余弦線(xiàn)、正弦線(xiàn)、正切線(xiàn)。

  高二數學(xué)的選修1知識點(diǎn)總結 6

  一、曲線(xiàn)與方程

  1、橢圓

  橢圓的定義是橢圓章節的基礎內容,高考對本節內容的考查可能仍然將以求橢圓的方程和研究橢圓的性質(zhì)為主,兩種題型均有可能出現、橢圓方面的知識與向量等知識的綜合考查命題趨勢較強。

  2、雙曲線(xiàn)

  標準方程的求法:雙曲線(xiàn)標準方程最常用的兩種方法是定義法和待定系數法、利用定義法求解,首先要熟悉雙曲線(xiàn)的定義,只要知道雙曲線(xiàn)的焦點(diǎn)和雙曲線(xiàn)上的任意一點(diǎn)的坐標都可以運用定義法求解其標準方程;解法二是利用待定系數法求解,是求雙曲線(xiàn)方程的根本方法之一,其思想是根據題目中的條件確定雙曲線(xiàn)方程中的系數a,b,主要是解方程組;解法三是利用共焦點(diǎn)曲線(xiàn)系方程求解,其要點(diǎn)是根據題目中的一個(gè)條件寫(xiě)出含一個(gè)參數的共焦點(diǎn)的二次曲線(xiàn)系方程,再根據另外一個(gè)條件求出這個(gè)參數、

  3、拋物線(xiàn)

 。1)利用已知條件求拋物線(xiàn)方程,一般有兩種方法:待定系數法和軌跡法。

 。2)韋達定理的熟練運用,可以防止運算復雜的焦點(diǎn)坐標,巧妙利用拋物線(xiàn)的性質(zhì)進(jìn)行解題。

 。3)焦點(diǎn)弦的幾何性質(zhì)是答題中容易忽略的問(wèn)題,在復雜的求解拋物線(xiàn)方程中,運用好這方面的知識能夠少走很多彎路。

  用點(diǎn)差法解圓錐曲線(xiàn)的'中點(diǎn)弦問(wèn)題

  二、空間幾何體

  1、空間幾何體的考查主要以其識別和應用為主,以填空題的形式出現,分值大約在5分。對空間幾何體的形狀、位置關(guān)系、數量特征、表面積和體積的命題需要加以關(guān)注。

  2、球的面積和體積:計算球的面積和體積就要求出球的半徑,在具體的空間幾何體中,首先要確定球心的位置,這樣才能根據已知數據求出半徑,除球以外的空間幾何體在求體積時(shí)都離不開(kāi)”高“,要注意使用線(xiàn)面垂直的相關(guān)定理確定高線(xiàn)。

  三、正弦定理和余弦定理

  1、正弦定理在一個(gè)三角形中,各邊和它所對角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R

  2、余弦定理三角形中,任意一邊的平方等于另外兩邊的平方和減去另兩邊及其夾角的余弦的積的兩倍。

  3、例題:熊丹老師教你正弦定理做題時(shí)的注意事項

  高二數學(xué)的選修1知識點(diǎn)總結 7

  (1)必然事件:在條件S下,一定會(huì )發(fā)生的事件,叫相對于條件S的必然事件;

  (2)不可能事件:在條件S下,一定不會(huì )發(fā)生的事件,叫相對于條件S的不可能事件;

  (3)確定事件:必然事件和不可能事件統稱(chēng)為相對于條件S的確定事件;

  (4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機事件;

  (5)頻數與頻率:在相同的條件S下重復n次試驗,觀(guān)察某一事件A是否出現,稱(chēng)n次試驗中事件A出現的次數nA為事件A出現的頻數;稱(chēng)事件A出現的比例fn(A)=nnA為事件A出現的概率:對于給定的隨機事件A,如果隨著(zhù)試驗次數的'增加,事件A發(fā)生的頻率fn(A)穩定在某個(gè)常數上,把這個(gè)常數記作P(A),稱(chēng)為事件A的概率。

  (6)頻率與概率的區別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數nA與試驗總次數n的比值nnA,它具有一定的穩定性,總在某個(gè)常數附近擺動(dòng),且隨著(zhù)試驗次數的不斷增多,這種擺動(dòng)幅度越來(lái)越小。我們把這個(gè)常數叫做隨機事件的概率,概率從數量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個(gè)事件的概率。

【高二數學(xué)的選修1知識點(diǎn)總結】相關(guān)文章:

高二物理選修二知識點(diǎn)總結10-09

高二物理選修一知識點(diǎn)總結優(yōu)秀09-22

高二生物復習知識點(diǎn)總結選修03-28

高二選修三生物知識點(diǎn)總結07-05

高二生物選修二知識點(diǎn)09-27

生物選修三知識點(diǎn)總結02-03

生物選修一知識點(diǎn)總結08-26

化學(xué)選修4知識點(diǎn)總結02-08

高二生物選修二復習知識點(diǎn)08-21

高二數學(xué)知識點(diǎn)總結11-10

99久久精品免费看国产一区二区三区|baoyu135国产精品t|40分钟97精品国产最大网站|久久综合丝袜日本网|欧美videosdesexo肥婆