- 相關(guān)推薦
關(guān)于數論問(wèn)題試題分析
1、下列每個(gè)算式中,最少有一個(gè)奇數,一個(gè)偶數,那么這12個(gè)整數中,至少有幾個(gè)偶數?
□+□=□ □-□=□ □×□=□ □÷□=□
2、任意取出1234個(gè)連續自然數,它們的總和是奇數還是偶數?
3、一串數排成一行,它們的規律是:前兩個(gè)數都是1,從第三個(gè)數開(kāi)始,每一個(gè)數都是前兩個(gè)數的和。如:1,1,2,3,5,8,13,21,34,55,…
試問(wèn):這串數的前100個(gè)數(包括第100個(gè)數)中,有多少個(gè)偶數?
4、能不能將1010寫(xiě)成10個(gè)連續自然數之和?如果能,把它寫(xiě)出來(lái);如果不能,說(shuō)明理由。
5、能否將1至25這25個(gè)自然數分成若干組,使得每一組中的最大數都等于組內其余各數的和?
6、在象棋比賽中,勝者得1分,敗者扣1分,若為平局,則雙方各得0分。今有若干個(gè)學(xué)生進(jìn)行比賽,每?jì)扇硕假愐痪帧,F知,其中有一位學(xué)生共得7分,另一位學(xué)生共得20分,試說(shuō)明,在比賽過(guò)程中至少有過(guò)一次平局。
7、在黑板上寫(xiě)上1,2,…,909,只要黑板上還有兩個(gè)或兩個(gè)以上的數就擦去其中的任意兩個(gè)數a,b,并寫(xiě)上a-b(其中a≥b)。問(wèn):最后黑板上剩下的是奇數還是偶數?
在整數中,有用2個(gè)以上的連續自然數的和來(lái)表達一個(gè)整數的方法.例如9:9=4+5,9=2+3+4,9有兩個(gè)用2個(gè)以上連續自然數的和來(lái)表達它的方法.
(1)請寫(xiě)出只有3種這樣的表示方法的最小自然數.
(2)請寫(xiě)出只有6種這樣的表示方法的最小自然數.
分析:(1)關(guān)于某整數,它的“奇數的約數的個(gè)數減1“,就是用連續的整數的和的形式來(lái)表達種數;根據(1)知道,有3種表達方法,于是奇約數的個(gè)數為3+1=4,對4分解質(zhì)因數4=2×2,最小的15(1、3、5、15);有連續的2、3、5個(gè)數相加;7+8;4+5+6;1+2+3+4+5;
(2)有6種表示方法,于是奇數約數的個(gè)數為6+1=7,最小為729(1、3、9、27、81、243、729),有連續的2,3、6、9、10、27個(gè)數相加:
364+365;242+243+244;119+120+…+124;77+78+79+…+85;36+37+…+45;14+15+…+40.
解答:解:根據(1)知道,有3種表達方法,于是奇約數的個(gè)數為3+1=4,對4分解質(zhì)因數4=2×2,最小的15(1、3、5、15);
有連續的2、3、5個(gè)數相加;7+8;4+5+6;1+2+3+4+5;
根據(2)知道,有6種表示方法,于是奇數約數的個(gè)數為6+1=7,最小為729(1、3、9、27、81、243、729),
有連續的2,3、6、9、10、27個(gè)數相加:
364+365;242+243+244;119+120+…+124;77+78+79+…+85;36+37+…+45;14+15+…+40
8、設a1,a2,…,a64是自然數1,2,…,64的任一排列,令b1=a1-a2,b2=a3-a4,…,b32=a63-a64;c1=b1-b2,c2=b3-b4,…,c16=b31-b32;d1=c1-c2,d2=c3-c4,…,d8=c15-c16;……
這樣一直做下去,最后得到的一個(gè)整數是奇數還是偶數?
1、至少有6個(gè)偶數。
2、奇數。解:1234÷2=617,所以在任取的1234個(gè)連續自然數中,奇數的個(gè)數是奇數,奇數個(gè)奇數之和是奇數,所以它們的總和是奇數。
3、33。提示:這串數排列的規律是以“奇奇偶”循環(huán)。
4、不能。
如果1010能表示成10個(gè)連續自然數之和,那么中間2個(gè)數的和應當是1010÷5=202。但中間2個(gè)數是連續自然數,它們的和應是奇數,不能等于偶數202。所以,1010不能寫(xiě)成10個(gè)連續自然數之和。
5、不能。提示:仿例3。
6、證:設得7分的學(xué)生勝了x1局,敗了y1局,得20分的學(xué)生勝了x2局,敗了y2局。由得分情況知:
x1-y1=7,x2-y2=20。
如果比賽過(guò)程中無(wú)平局出現,那么由每人比賽的場(chǎng)次相同可得x1+y1=x2+y2,即x1+y1+x2+y2是偶數。另一方面,由x1-y1=7知x1+y2為奇數,由x2-y2=20知x2+y2為偶數,推知x1+y1+x2+y2為奇數。這便出現矛盾,所以比賽過(guò)程中至少有一次平局。
7、奇數。解:黑板上所有數的和S=1+2+…+909是一個(gè)奇數,每操作一次,總和S減少了a+b-(a-b)=2b,這是一個(gè)偶數,說(shuō)明總和S的奇偶性不變。由于開(kāi)始時(shí)S是奇數,因此終止時(shí)S仍是一個(gè)奇數。
8、偶數。
解:我們知道,對于整數a與b,a+b與a-b的奇偶性相同,由此可知,上述計算的第二步中,32個(gè)數。
a1-a2,a3-a4,…,a63-a64,
分別與下列32個(gè)數。
a1+a2,a3+a4,…,a63+a64,
有相同的奇偶性,這就是說(shuō),在只考慮奇偶性時(shí),可以用“和”代替“差”,這樣可以把原來(lái)的計算過(guò)程改為
第一步:a1,a2,a3,a4,…,a61,a62,a63,a64;
第一步:a1+a2,a3+a4,…,a61+a62,a63+a64;
第三步:a1+a2+a3+a4,…,a61+a62+a63+a64;
……
最后一步所得到的數是a1+a2+…+a63+a64。由于a1,a2,…,a64是1,2,…,64的一個(gè)排列,因此它們的總和為1+2+…+64是一個(gè)偶數,故最后一個(gè)整數是偶數
將1,2,3這3個(gè)數字選出1個(gè)、2個(gè)、3個(gè)按任意次序排列出來(lái)可得到不同的一位數、二位數、三位數,請將其中的質(zhì)數都寫(xiě)出來(lái).
分析:按要求寫(xiě)出所有一位數,二位數,三位數,然后選出質(zhì)數即可.
解答:解:一位數為:1,2,3,
二位數為:12,13,21,23,31,32,
三位數為:123,132,213,231,312,321,
其中質(zhì)數為2,3,13,23,31.
【數論問(wèn)題試題分析】相關(guān)文章:
小學(xué)語(yǔ)文試題特點(diǎn)及試題分析04-18
JAVA面試題(問(wèn)題)07-13
小學(xué)語(yǔ)文試卷試題分析05-16
經(jīng)典面試題及答案分析07-13
java面試題分析07-13
白領(lǐng)加薪問(wèn)題分析07-12
經(jīng)典面試問(wèn)題的分析07-01
酒店問(wèn)題的案例分析03-30
生活不分專(zhuān)業(yè)問(wèn)題分析07-03
java面試題:文件讀取問(wèn)題.07-13