- 相關(guān)推薦
高一數學(xué)必修一知識點(diǎn)總結歸納
總結是在某一時(shí)期、某一項目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評價(jià),從而得出教訓和一些規律性認識的一種書(shū)面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,因此好好準備一份總結吧。你所見(jiàn)過(guò)的總結應該是什么樣的?以下是小編幫大家整理的高一數學(xué)必修一知識點(diǎn)總結歸納,希望能夠幫助到大家。
高一數學(xué)必修一知識點(diǎn)總結歸納1
反比例函數
形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。
自變量x的取值范圍是不等于0的一切實(shí)數。
反比例函數圖像性質(zhì):
反比例函數的圖像為雙曲線(xiàn)。
由于反比例函數屬于奇函數,有f(—x)=—f(x),圖像關(guān)于原點(diǎn)對稱(chēng)。
另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點(diǎn),向兩個(gè)坐標軸作垂線(xiàn),這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。
上面給出了k分別為正和負(2和—2)時(shí)的函數圖像。
當K>0時(shí),反比例函數圖像經(jīng)過(guò)一,三象限,是減函數
當K<0時(shí),反比例函數圖像經(jīng)過(guò)二,四象限,是增函數
反比例函數圖像只能無(wú)限趨向于坐標軸,無(wú)法和坐標軸相交。
知識點(diǎn):
1、過(guò)反比例函數圖象上任意一點(diǎn)作兩坐標軸的`垂線(xiàn)段,這兩條垂線(xiàn)段與坐標軸圍成的矩形的面積為|k|。
2、對于雙曲線(xiàn)y=k/x,若在分母上加減任意一個(gè)實(shí)數(即y=k/(x±m)m為常數),就相當于將雙曲線(xiàn)圖象向左或右平移一個(gè)單位。(加一個(gè)數時(shí)向左平移,減一個(gè)數時(shí)向右平移)
高一數學(xué)必修一知識點(diǎn)總結歸納2
二次函數
I.定義與定義表達式
一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c
(a,b,c為常數,a≠0,且a決定函數的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)
則稱(chēng)y為x的二次函數。
二次函數表達式的右邊通常為二次三項式。
II.二次函數的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點(diǎn)式:y=a(x-h)^2+k[拋物線(xiàn)的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線(xiàn)]
注:在3種形式的互相轉化中,有如下關(guān)系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a
III.二次函數的圖像
在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線(xiàn)。
IV.拋物線(xiàn)的性質(zhì)
1.拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)x=-b/2a。對稱(chēng)軸與拋物線(xiàn)的.交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。
特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)
2.拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標為
P(-b/2a,(4ac-b^2)/4a)
當-b/2a=0時(shí),P在y軸上;當Δ=b^2-4ac=0時(shí),P在x軸上。
3.二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。
當a>0時(shí),拋物線(xiàn)向上開(kāi)口;當a<0時(shí),拋物線(xiàn)向下開(kāi)口。
|a|越大,則拋物線(xiàn)的開(kāi)口越小。
高一數學(xué)必修一知識點(diǎn)總結歸納3
1、二次函數y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標及對稱(chēng)軸如下表:
解析式
頂點(diǎn)坐標
對稱(chēng)軸
y=ax^2
。0,0)
x=0
y=a(x—h)^2
。╤,0)
x=h
y=a(x—h)^2+k
。╤,k)
x=h
y=ax^2+bx+c
。ā猙/2a,[4ac—b^2]/4a)
x=—b/2a
當h>0時(shí),y=a(x—h)^2的圖象可由拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位得到,
當h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到。
當h>0,k>0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y=a(x—h)^2+k的圖象;
當h>0,k<0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y=a(x—h)^2+k的圖象;
當h<0,k>0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y=a(x—h)^2+k的圖象;
當h<0,k<0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y=a(x—h)^2+k的圖象;
因此,研究拋物線(xiàn)y=ax^2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x—h)^2+k的形式,可確定其頂點(diǎn)坐標、對稱(chēng)軸,拋物線(xiàn)的大體位置就很清楚了。這給畫(huà)圖象提供了方便。
2、拋物線(xiàn)y=ax^2+bx+c(a≠0)的圖象:當a>0時(shí),開(kāi)口向上,當a<0時(shí)開(kāi)口向下,對稱(chēng)軸是直線(xiàn)x=—b/2a,頂點(diǎn)坐標是(—b/2a,[4ac—b^2]/4a)。
3、拋物線(xiàn)y=ax^2+bx+c(a≠0),若a>0,當x≤—b/2a時(shí),y隨x的增大而減;當x≥—b/2a時(shí),y隨x的增大而增大。若a<0,當x≤—b/2a時(shí),y隨x的增大而增大;當x≥—b/2a時(shí),y隨x的增大而減小。
4、拋物線(xiàn)y=ax^2+bx+c的圖象與坐標軸的交點(diǎn):
。1)圖象與y軸一定相交,交點(diǎn)坐標為(0,c);
。2)當△=b^2—4ac>0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
。╝≠0)的兩根。這兩點(diǎn)間的距離AB=|x?—x?|
當△=0。圖象與x軸只有一個(gè)交點(diǎn);
當△<0。圖象與x軸沒(méi)有交點(diǎn)。當a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數時(shí),都有y>0;當a<0時(shí),圖象落在x軸的'下方,x為任何實(shí)數時(shí),都有y<0。
5、拋物線(xiàn)y=ax^2+bx+c的最值:如果a>0(a<0),則當x=—b/2a時(shí),y最。ù螅┲=(4ac—b^2)/4a。
頂點(diǎn)的橫坐標,是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標,是最值的取值。
6、用待定系數法求二次函數的解析式
。1)當題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對對應值時(shí),可設解析式為一般形式:
y=ax^2+bx+c(a≠0)。
。2)當題給條件為已知圖象的頂點(diǎn)坐標或對稱(chēng)軸時(shí),可設解析式為頂點(diǎn)式:y=a(x—h)^2+k(a≠0)。
。3)當題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標時(shí),可設解析式為兩根式:y=a(x—x?)(x—x?)(a≠0)。
7、二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現。
高一數學(xué)必修一知識點(diǎn)總結歸納4
知識點(diǎn)1、集合與元素
一個(gè)東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。例如:你所在的班級是一個(gè)集合,是由幾十個(gè)和你同齡的同學(xué)組成的集合,你相對于這個(gè)班級集合來(lái)說(shuō),是它的'一個(gè)元素;而整個(gè)學(xué)校又是由許許多多個(gè)班級組成的集合,你所在的班級只是其中的一分子,是一個(gè)元素。班級相對于你是集合,相對于學(xué)校是元素,參照物不同,得到的結論也不同,可見(jiàn),是集合還是元素,并不是絕對的
知識點(diǎn)2、解集合問(wèn)題的關(guān)鍵
解集合問(wèn)題的關(guān)鍵:弄清集合是由哪些元素所構成的,也就是將抽象問(wèn)題具體化、形象化,將特征性質(zhì)描述法表示的集合用列舉法來(lái)表示,或用韋恩圖來(lái)表示抽象的集合,或用圖形來(lái)表示集合,比如用數軸來(lái)表示集合,或是集合的元素為有序實(shí)數對時(shí),可用平面直角坐標系中的圖形表示相關(guān)的集合等
高一數學(xué)必修一知識點(diǎn)總結歸納5
兩個(gè)平面的位置關(guān)系:
。1)兩個(gè)平面互相平行的定義:空間兩平面沒(méi)有公共點(diǎn)
。2)兩個(gè)平面的位置關(guān)系:
兩個(gè)平面平行—————沒(méi)有公共點(diǎn);兩個(gè)平面相交—————有一條公共直線(xiàn)。
a、平行
兩個(gè)平面平行的判定定理:如果一個(gè)平面內有兩條相交直線(xiàn)都平行于另一個(gè)平面,那么這兩個(gè)平面平行。
兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么交線(xiàn)平行。
b、相交
二面角
。1)半平面:平面內的一條直線(xiàn)把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。
。2)二面角:從一條直線(xiàn)出發(fā)的.兩個(gè)半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
。3)二面角的棱:這一條直線(xiàn)叫做二面角的棱。
。4)二面角的面:這兩個(gè)半平面叫做二面角的面。
。5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內分別作垂直于棱的兩條射線(xiàn),這兩條射線(xiàn)所成的角叫做二面角的平面角。
。6)直二面角:平面角是直角的二面角叫做直二面角。
兩平面垂直
兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說(shuō)這兩個(gè)平面互相垂直。記為⊥
兩平面垂直的判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線(xiàn),那么這兩個(gè)平面互相垂直
兩個(gè)平面垂直的性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內垂直于交線(xiàn)的直線(xiàn)垂直于另一個(gè)平面。
高一數學(xué)必修一知識點(diǎn)總結歸納6
【基本初等函數】
一、指數函數
。ㄒ唬┲笖蹬c指數冪的運算
1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈
當是奇數時(shí),正數的次方根是一個(gè)正數,負數的次方根是一個(gè)負數。此時(shí),的次方根用符號表示。式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開(kāi)方數(radicand)。
當是偶數時(shí),正數的次方根有兩個(gè),這兩個(gè)數互為相反數。此時(shí),正數的正的次方根用符號表示,負的次方根用符號—表示。正的次方根與負的次方根可以合并成±(>0)。由此可得:負數沒(méi)有偶次方根;0的任何次方根都是0,記作。
注意:當是奇數時(shí),當是偶數時(shí),
2、分數指數冪
正數的分數指數冪的意義,規定:
0的正分數指數冪等于0,0的.負分數指數冪沒(méi)有意義
指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質(zhì)也同樣可以推廣到有理數指數冪。
3、實(shí)數指數冪的運算性質(zhì)
。ǘ┲笖岛瘮导捌湫再|(zhì)
1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R。
注意:指數函數的底數的取值范圍,底數不能是負數、零和1。
2、指數函數的圖象和性質(zhì)
高一數學(xué)必修一知識點(diǎn)總結歸納7
一、集合及其表示
1、集合的含義:
“集合”這個(gè)詞首先讓我們想到的是上體育課或者開(kāi)會(huì )時(shí)老師經(jīng)常喊的“全體集合”。數學(xué)上的“集合”和這個(gè)意思是一樣的,只不過(guò)一個(gè)是動(dòng)詞一個(gè)是名詞而已。
所以集合的含義是:某些指定的對象集在一起就成為一個(gè)集合,簡(jiǎn)稱(chēng)集,其中每一個(gè)對象叫元素。比如高一二班集合,那么所有高一二班的同學(xué)就構成了一個(gè)集合,每一個(gè)同學(xué)就稱(chēng)為這個(gè)集合的'元素。
2、集合的表示
通常用大寫(xiě)字母表示集合,用小寫(xiě)字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。
有一些特殊的集合需要記憶:
非負整數集(即自然數集)N正整數集N_或N+
整數集Z有理數集Q實(shí)數集R
集合的表示方法:列舉法與描述法。
、倭信e法:{a,b,c……}
、诿枋龇ǎ簩⒓现械脑氐墓矊傩悦枋龀鰜(lái)。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}
、壅Z(yǔ)言描述法:例:{不是直角三角形的三角形}
例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}
強調:描述法表示集合應注意集合的代表元素
A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數組元素(x,y),集合B中只有元素y。
3、集合的三個(gè)特性
(1)無(wú)序性
指集合中的元素排列沒(méi)有順序,如集合A={1,2},集合B={2,1},則集合A=B。
例題:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B
注意:該題有兩組解。
(2)互異性
指集合中的元素不能重復,A={2,2}只能表示為{2}
(3)確定性
集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的情況。
高一數學(xué)必修一知識點(diǎn)總結歸納8
對數函數的一般形式為,它實(shí)際上就是指數函數的反函數。因此指數函數里對于a的規定,同樣適用于對數函數。
對于不同大小a所表示的函數圖形:
可以看到對數函數的圖形只不過(guò)的指數函數的圖形的關(guān)于直線(xiàn)y=x的`對稱(chēng)圖形,因為它們互為反函數。
。1)對數函數的定義域為大于0的實(shí)數集合。
。2)對數函數的值域為全部實(shí)數集合。
。3)函數總是通過(guò)(1,0)這點(diǎn)。
。4)a大于1時(shí),為單調遞增函數,并且上凸;a小于1大于0時(shí),函數為單調遞減函數,并且下凹。
。5)顯然對數函數無(wú)界。
【高一數學(xué)必修一知識點(diǎn)總結歸納】相關(guān)文章:
高一政治必修一知識點(diǎn)總結歸納03-22
高一歷史必修一知識點(diǎn)歸納03-31
高一歷史必修二知識點(diǎn)歸納06-04
高一歷史必修一知識點(diǎn)梳理歸納08-15
高一必修2歷史知識點(diǎn)歸納06-04
高一歷史必修二知識點(diǎn)歸納合集06-07
高一歷史必修二知識點(diǎn)歸納8篇06-04