- 相關(guān)推薦
高中數學(xué)教案范文:直線(xiàn)的方程
教案是教師為順利而有效地開(kāi)展 教學(xué)活動(dòng),根據教學(xué) 大綱和教科書(shū)要求及學(xué)生的實(shí)際情況,以課時(shí)或課題為單位,對 教學(xué)內容、教學(xué) 步驟、教學(xué) 方法等進(jìn)行的具體設計和安排的一種實(shí)用性教學(xué)文書(shū)。下面是小編為你帶來(lái)的高中數學(xué)教案范文:直線(xiàn)的方程 ,歡迎閱讀。
教學(xué)目標:
。1)掌握直線(xiàn)方程的一般形式,掌握直線(xiàn)方程幾種形式之間的互化.
。2)理解直線(xiàn)與二元一次方程的關(guān)系及其證明
。3)培養學(xué)生抽象概括能力、分類(lèi)討論能力、逆向思維的習慣和形成特殊與一般辯證統一的觀(guān)點(diǎn).
教學(xué)重點(diǎn)、難點(diǎn):直線(xiàn)方程的一般式.直線(xiàn)與二元一次方程 ( 、 不同時(shí)為0)的對應關(guān)系及其證明.
教學(xué)用具:計算機
教學(xué)方法:?jiǎn)l(fā)引導法,討論法
教學(xué)過(guò)程:
下面給出教學(xué)實(shí)施過(guò)程設計的簡(jiǎn)要思路:
教學(xué)設計思路:
。ㄒ唬┮氲脑O計
前邊學(xué)習了如何根據所給條件求出直線(xiàn)方程的方法,看下面問(wèn)題:
問(wèn):說(shuō)出過(guò)點(diǎn) (2,1),斜率為2的直線(xiàn)的方程,并觀(guān)察方程屬于哪一類(lèi),為什么?
答:直線(xiàn)方程是 ,屬于二元一次方程,因為未知數有兩個(gè),它們的最高次數為一次.
肯定學(xué)生回答,并糾正學(xué)生中不規范的表述.再看一個(gè)問(wèn)題:
問(wèn):求出過(guò)點(diǎn) , 的直線(xiàn)的方程,并觀(guān)察方程屬于哪一類(lèi),為什么?
答:直線(xiàn)方程是 (或其它形式),也屬于二元一次方程,因為未知數有兩個(gè),它們的最高次數為一次.
肯定學(xué)生回答后強調“也是二元一次方程,都是因為未知數有兩個(gè),它們的最高次數為一次”.
啟發(fā):你在想什么(或你想到了什么)?誰(shuí)來(lái)談?wù)?各小組可以討論討論.
學(xué)生紛紛談出自己的想法,教師邊評價(jià)邊啟發(fā)引導,使學(xué)生的認識統一到如下問(wèn)題:
【問(wèn)題1】“任意直線(xiàn)的方程都是二元一次方程嗎?”
。ǘ┍竟澲黧w內容教學(xué)的設計
這是本節課要解決的第一個(gè)問(wèn)題,如何解決?自己先研究研究,也可以小組研究,確定解決問(wèn)題的思路.
學(xué)生或獨立研究,或合作研究,教師巡視指導.
經(jīng)過(guò)一定時(shí)間的研究,教師組織開(kāi)展集體討論.首先讓學(xué)生陳述解決思路或解決方案:
思路一:…
思路二:…
……
教師組織評價(jià),確定最優(yōu)方案(其它待課下研究)如下:
按斜率是否存在,任意直線(xiàn) 的位置有兩種可能,即斜率 存在或不存在.
當 存在時(shí),直線(xiàn) 的截距 也一定存在,直線(xiàn) 的方程可表示為 ,它是二元一次方程.
當 不存在時(shí),直線(xiàn) 的方程可表示為 形式的方程,它是二元一次方程嗎?
學(xué)生有的認為是有的認為不是,此時(shí)教師引導學(xué)生,逐步認識到把它看成二元一次方程的合理性:
平面直角坐標系中直線(xiàn) 上點(diǎn)的坐標形式,與其它直線(xiàn)上點(diǎn)的坐標形式?jīng)]有任何區別,根據直線(xiàn)方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.
綜合兩種情況,我們得出如下結論:
在平面直角坐標系中,對于任何一條直線(xiàn),都有一條表示這條直線(xiàn)的關(guān)于 、 的二元一次方程.
至此,我們的問(wèn)題1就解決了.簡(jiǎn)單點(diǎn)說(shuō)就是:直線(xiàn)方程都是二元一次方程.而且這個(gè)方程一定可以表示成 或 的形式,準確地說(shuō)應該是“要么形如 這樣,要么形如 這樣的方程”.
同學(xué)們注意:這樣表達起來(lái)是不是很啰嗦,能不能有一個(gè)更好的表達?
學(xué)生們不難得出:二者可以概括為統一的形式.
這樣上邊的結論可以表述如下:
在平面直角坐標系中,對于任何一條直線(xiàn),都有一條表示這條直線(xiàn)的形如 (其中 、 不同時(shí)為0)的二元一次方程.
啟發(fā):任何一條直線(xiàn)都有這種形式的方程.你是否覺(jué)得還有什么與之相關(guān)的問(wèn)題呢?
【問(wèn)題2】任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線(xiàn)嗎?
不難看出上邊的結論只是直線(xiàn)與方程相互關(guān)系的一個(gè)方面,這個(gè)問(wèn)題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結論.那么如何研究呢?
師生共同討論,評價(jià)不同思路,達成共識:
回顧上邊解決問(wèn)題的思路,發(fā)現原路返回就是非常好的思路,即方程 (其中 、 不同時(shí)為0)系數 是否為0恰好對應斜率 是否存在,即
。1)當 時(shí),方程可化為
這是表示斜率為 、在 軸上的截距為 的直線(xiàn).
。2)當 時(shí),由于 、 不同時(shí)為0,必有 ,方程可化為
這表示一條與 軸垂直的直線(xiàn).
因此,得到結論:
在平面直角坐標系中,任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線(xiàn).
為方便,我們把 (其中 、 不同時(shí)為0)稱(chēng)作直線(xiàn)方程的一般式是合理的.
【動(dòng)畫(huà)演示】
演示“直線(xiàn)各參數”文件,體會(huì )任何二元一次方程都表示一條直線(xiàn).
至此,我們的第二個(gè)問(wèn)題也圓滿(mǎn)解決,而且我們還發(fā)現上述兩個(gè)問(wèn)題其實(shí)是一個(gè)大問(wèn)題的兩個(gè)方面,這個(gè)大問(wèn)題揭示了直線(xiàn)與二元一次方程的對應關(guān)系,同時(shí),直線(xiàn)方程的一般形式是對直線(xiàn)特殊形式的抽象和概括,而且抽象的層次越高越簡(jiǎn)潔,我們還體會(huì )到了特殊與一般的轉化關(guān)系.
。ㄈ┚毩曥柟、總結提高、板書(shū)和作業(yè)等環(huán)節的設計
略
【高中數學(xué)教案:直線(xiàn)的方程】相關(guān)文章:
線(xiàn)段直線(xiàn)段直線(xiàn)和射線(xiàn)的課堂實(shí)錄07-02
初中知識:數學(xué)直線(xiàn)和直線(xiàn)關(guān)系公式06-26
直線(xiàn)行駛考試規定07-03
直線(xiàn)行駛考試要求分析07-03
直線(xiàn)行駛考試口訣匯總07-03
科三的直線(xiàn)行駛技巧06-29
直線(xiàn)行駛考試技巧攻略07-03
直線(xiàn)行駛電子考試技巧07-02