六年級數學(xué)《抽屜原理》教學(xué)設計
作為一位杰出的教職工,就難以避免地要準備教學(xué)設計,教學(xué)設計是把教學(xué)原理轉化為教學(xué)材料和教學(xué)活動(dòng)的計劃。那要怎么寫(xiě)好教學(xué)設計呢?以下是小編精心整理的六年級數學(xué)《抽屜原理》教學(xué)設計,歡迎大家借鑒與參考,希望對大家有所幫助。
六年級數學(xué)《抽屜原理》教學(xué)設計1
教學(xué)內容:
人教版《義務(wù)教育課程標準實(shí)驗教科書(shū)數學(xué)》六年級下冊數學(xué)廣角《抽屜原理》。
教學(xué)目標:
1、知識與能力:初步了解抽屜原理,運用抽屜原理知識解決簡(jiǎn)單的實(shí)際問(wèn)題。
2、過(guò)程和方法:經(jīng)歷抽屜原理的探究過(guò)程,通過(guò)動(dòng)手操作、分析、推理等活動(dòng),發(fā)現、歸納、總結原理。
3、情感與價(jià)值:通過(guò)“抽屜原理”的靈活應用感受數學(xué)的魅力;提高同學(xué)們解決問(wèn)題的能力和興趣。
教學(xué)重點(diǎn):
經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”。
教學(xué)難點(diǎn):
理解“抽屜原理”,并對一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。
教具學(xué)具:
課件、撲克牌、每組都有相應數量的杯子、吸管。
教學(xué)過(guò)程:
一、創(chuàng )設情景,導入新課
分配房間1、3個(gè)人住兩個(gè)房間2、4個(gè)人住3個(gè)房間
板書(shū)課題:
抽屜原理
展示學(xué)習目標
1、經(jīng)歷抽屜原理的探究過(guò)程,初步了解抽屜原理;
2、運用抽屜原理解決簡(jiǎn)單的實(shí)際問(wèn)題。
二、探究新知,揭示原理
1、出示題目:把4根吸管放進(jìn)3個(gè)紙杯里。
師:先進(jìn)入活動(dòng)(一):把4枝吸管放進(jìn)3個(gè)杯子里,有多少種放法呢?會(huì )出現什么情況呢?大家擺擺看。在不同的擺法中,把每個(gè)杯子里面吸管的枝數記錄下來(lái),當某個(gè)杯子中沒(méi)放吸管時(shí)可以用0表示。
2、學(xué)生動(dòng)手操作,自主探究。師巡視,了解情況。
3、匯報交流指名演示。
4、思考:再認真觀(guān)察記錄,有什么發(fā)現?
課件出示:總有一個(gè)杯子里至少有2根吸管。
5、理解“總有”、“至少”的含義
總有一個(gè)杯子:一定有一個(gè)杯子,但并不一定是只有一個(gè)杯子。
至少2根吸管:最少2枝,也可能比2枝多
6、討論、交流:剛剛我們是把每一種放法都列舉出來(lái),知道了總有一個(gè)杯子里至少有2枝吸管。那為什么會(huì )出現這種情況呢?可不可以每個(gè)杯子里只放1枝吸管呢?和小組里的同學(xué)說(shuō)說(shuō)你的想法。
7、匯報:
吸管多,杯子少。
課件演示:如果每個(gè)杯子只放1枝吸管,最多放3枝。剩下的1枝吸管不管放進(jìn)哪個(gè)杯子里,一定會(huì )出現“總有一個(gè)杯子里至少有2枝吸管”的.現象。
8、優(yōu)化方法
如果把5枝吸管放進(jìn)4個(gè)杯子,結果是否一樣呢?怎樣解釋這一現象?
師:把4枝吸管放進(jìn)3個(gè)杯子里,把5枝吸管放進(jìn)4個(gè)杯子里,都會(huì )出現“總有一個(gè)杯子里至少有2枝吸管”的現象。那么
把6枝吸管放進(jìn)5個(gè)杯子里,把7枝吸管放進(jìn)6個(gè)杯子里,把100枝吸管放進(jìn)99個(gè)杯子里,結果會(huì )怎樣呢?
9、發(fā)現規律
師:從上面的幾個(gè)問(wèn)題中,你發(fā)現了什么相同的地方?
條件都是吸管數比杯子數多1;結果都一樣:總有一個(gè)杯子里至少有2枝吸管。
課件出示:只要放的吸管數比杯子的數量多1,不論怎么放,總有一個(gè)杯子里至少放進(jìn)2枝吸管。
10、想一想:如果要放的吸管數比杯子的數量多2,多3,多4或更多呢?這個(gè)結論還成立嗎?(只要求學(xué)生能說(shuō)出自己的看法,并不要求一定是正確的)
師:是不是像同學(xué)們想的那樣呢?我們接著(zhù)進(jìn)入下面的學(xué)習。
11出示自學(xué)提示:結合剛才所學(xué),大膽猜一猜,也可動(dòng)手擺一擺,并結合書(shū)上例2進(jìn)行小組合作學(xué)習,完成表格,試著(zhù)探索求“至少數”的方法。
學(xué)生小組學(xué)習,填寫(xiě)表格,討論規律。
指生匯報得出結論:至少數=商+1
三、歸納總結抽屜原理
把m個(gè)物體放進(jìn)n個(gè)抽屜里,用算術(shù)表示m/n=a……b,總有一個(gè)杯子里至少放a+i個(gè)物體,也就至“少數=商+1”
四、拓展應用:
課件一:填空
1、34個(gè)小朋友要進(jìn)4間屋子,至少有()個(gè)小朋友要進(jìn)同一間屋子。
2、13個(gè)同學(xué)坐5張椅子,至少有()個(gè)同學(xué)坐在同一張椅子上
3、新兵訓練,戰士小王5槍命中了41環(huán),戰士小王總有一槍不低于()環(huán)。
4、從街上人群中任意找來(lái)20個(gè)人,可以確定,至少有()個(gè)人屬相相同
課件二:
從撲克牌中取出兩張王牌,在剩下的52張撲克牌任意抽牌。
。1)從中抽出18張牌,至少有幾張是同花色?
。2)從中抽出20張牌,至少有幾張數字相同?
課件三:
六(2)班有學(xué)生39人,我們可以肯定,在這39人中,至少有人的生日在同一個(gè)月?想一想,為什么?
課件四:
六年級四個(gè)班的學(xué)生去春游,自由活動(dòng)時(shí),有6個(gè)同學(xué)在一起,可以肯定,。為什么?
五、課堂總結
同學(xué)們,通過(guò)本節課的學(xué)習,你有哪些收獲?
六、生成創(chuàng )新
課后搜集生活中有關(guān)抽屜原理的應用,試著(zhù)自己編寫(xiě)一些利用抽屜原理解決的問(wèn)題。
六年級數學(xué)《抽屜原理》教學(xué)設計2
【教學(xué)內容】
《義務(wù)教育課程標準實(shí)驗教科書(shū)數學(xué)》六年級下冊第68頁(yè)。
【教學(xué)目標】
1.經(jīng)歷抽屜原理的探究過(guò)程,初步了解抽屜原理,會(huì )用抽屜原理解決簡(jiǎn)單的實(shí)際問(wèn)題。
2. 通過(guò)操作發(fā)展學(xué)生的類(lèi)推能力,形成比較抽象的數學(xué)思維。
3. 通過(guò)抽屜原理的靈活應用感受數學(xué)的魅力。
【教學(xué)重點(diǎn)】
經(jīng)歷抽屜原理的探究過(guò)程,初步了解抽屜原理。
【教學(xué)難點(diǎn)】
理解抽屜原理,并對一些簡(jiǎn)單實(shí)際問(wèn)題加以模型化。
【教具、學(xué)具準備】
每組都有相應數量的盒子、鉛筆、書(shū)。
【教學(xué)過(guò)程】
一、課前游戲引入。
師:同學(xué)們在我們上課之前,先做個(gè)小游戲:老師這里準備了4把椅子,請5個(gè)同學(xué)上來(lái),誰(shuí)愿來(lái)?(學(xué)生上來(lái)后)
師:聽(tīng)清要求 ,老師說(shuō)開(kāi)始以后,請你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下,好嗎?(好)。這時(shí)教師面向全體,背對那5個(gè)人。
師:開(kāi)始。
師:都坐下了嗎?
生:坐下了。
師:我沒(méi)有看到他們坐的情況,但是我敢肯定地說(shuō):不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)我說(shuō)得對嗎?
生:對!
師:老師為什么能做出準確的判斷呢?道理是什么?這其中蘊含著(zhù)一個(gè)有趣的數學(xué)原理,這節課我們就一起來(lái)研究這個(gè)原理。下面我們開(kāi)始上課,可以嗎?
【點(diǎn)評】教師從學(xué)生熟悉的搶椅子游戲開(kāi)始,讓學(xué)生初步體驗不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué),使學(xué)生明確這是現實(shí)生活中存在著(zhù)的一種現象,激發(fā)了學(xué)生的學(xué)習興趣,為后面開(kāi)展教與學(xué)的活動(dòng)做了鋪墊。
二、通過(guò)操作,探究新知
(一)教學(xué)例1
1.出示題目:有3枝鉛筆,2個(gè)盒子,把3枝鉛筆放進(jìn)2個(gè)盒子里,怎么放?有幾種不同的放法?
師:請同學(xué)們實(shí)際放放看,誰(shuí)來(lái)展示一下你擺放的情況?(指名擺)根據學(xué)生擺的情況,師板書(shū)各種情況 (3,0) (2,1)
【點(diǎn)評】此處設計教師注意了從最簡(jiǎn)單的數據開(kāi)始擺放,有利于學(xué)生觀(guān)察、理解,有利于調動(dòng)所有的學(xué)生積極參與進(jìn)來(lái)。
師:5個(gè)人坐在4把椅子上,不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)。3支筆放進(jìn)2個(gè)盒子里呢?
生:不管怎么放,總有一個(gè)盒子里至少有2枝筆?
是:是這樣嗎?誰(shuí)還有這樣的發(fā)現,再說(shuō)一說(shuō)。
師:那么,把4枝鉛筆放進(jìn)3個(gè)盒子里,怎么放?有幾種不同的放法?請同學(xué)們實(shí)際放放看。(師巡視,了解情況,個(gè)別指導)
師:誰(shuí)來(lái)展示一下你擺放的情況?(指名擺)根據學(xué)生擺的情況,師板書(shū)各種情況。
(4,0,0)
(3,1,0)
(2,2,0)
(2,1,1),
師:還有不同的放法嗎?
生:沒(méi)有了。
師:你能發(fā)現什么?
生:不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。
師:總有是什么意思?
生:一定有
師:至少有2枝什么意思?
生:不少于兩只,可能是2枝,也可能是多于2枝?
師:就是不能少于2枝。(通過(guò)操作讓學(xué)生充分體驗感受)
師:把3枝筆放進(jìn)2個(gè)盒子里,和把4枝筆飯放進(jìn)3個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。這是我們通過(guò)實(shí)際操作現了這個(gè)結論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個(gè)結論呢?
學(xué)生思考組內交流匯報
師:哪一組同學(xué)能把你們的想法匯報一下?
組1生:我們發(fā)現如果每個(gè)盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2枝鉛筆。
師:你能結合操作給大家演示一遍嗎?(學(xué)生操作演示)
師:同學(xué)們自己說(shuō)說(shuō)看,同位之間邊演示邊說(shuō)一說(shuō)好嗎?
師:這種分法,實(shí)際就是先怎么分的?
生眾:平均分
師:為什么要先平均分?(組織學(xué)生討論)
生1:要想發(fā)現存在著(zhù)總有一個(gè)盒子里一定至少有2枝,先平均分,余下1枝,不管放在那個(gè)盒子里,一定會(huì )出現總有一個(gè)盒子里一定至少有2枝。
生2:這樣分,只分一次就能確定總有一個(gè)盒子至少有幾枝筆了?
師:同意嗎?那么把5枝筆放進(jìn)4個(gè)盒子里呢?(可以結合操作,說(shuō)一說(shuō))
師:哪位同學(xué)能把你的想法匯報一下,
生:(一邊演示一邊說(shuō))5枝鉛筆放在4個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。
師:把6枝筆放進(jìn)5個(gè)盒子里呢?還用擺嗎?
生:6枝鉛筆放在5個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。
師:把7枝筆放進(jìn)6個(gè)盒子里呢?
把8枝筆放進(jìn)7個(gè)盒子里呢?
把9枝筆放進(jìn)8個(gè)盒子里呢?
。
你發(fā)現什么?
生1:筆的枝數比盒子數多1,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。
師:你的發(fā)現和他一樣嗎?(一樣)你們太了不起了!同桌互相說(shuō)一遍。
【點(diǎn)評】教師關(guān)注了抽屜原理的最基本原理,物體個(gè)數必須要多于抽屜個(gè)數,化繁為簡(jiǎn),此處確實(shí)有必要提領(lǐng)出來(lái)進(jìn)行教學(xué)。在學(xué)生自主探索的基礎上,教師注意引導學(xué)生得出一般性的結論:只要放的鉛筆數盒數多1,總有一個(gè)盒里至少放進(jìn)2支。通過(guò)教師組織開(kāi)展的扎實(shí)有效的教學(xué)活動(dòng),學(xué)生學(xué)的有興趣,發(fā)展了學(xué)生的類(lèi)推能力,形成比較抽象的數學(xué)思維。
2.解決問(wèn)題。
(1)課件出示:5只鴿子飛回4個(gè)鴿籠,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里,為什么?
(學(xué)生活動(dòng)獨立思考 自主探究)
(2)交流、說(shuō)理活動(dòng)。
師:誰(shuí)能說(shuō)說(shuō)為什么?
生1:如果一個(gè)鴿籠里飛進(jìn)一只鴿子,最多飛進(jìn)4只鴿子,還剩一只,要飛進(jìn)其中的一個(gè)鴿籠里。不管怎么飛,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里。
生2:我們也是這樣想的。
生3:把5只鴿子平均分到4個(gè)籠子里,每個(gè)籠子1只,剩下1只,放到任何一個(gè)籠子里,就能保證至少有2只鴿子飛進(jìn)同一個(gè)籠里。
生4:可以用54=11,余下的1只,飛到任何一個(gè)鴿籠里都能保證至少有2只鴿子飛進(jìn)一個(gè)個(gè)籠里,所以,至少有2只鴿子飛進(jìn)同一個(gè)籠里的結論是正確的。
師:許多同學(xué)沒(méi)有再擺學(xué)具,證明這個(gè)結論是正確的,用的什么方法?
生:用平均分的方法,就能說(shuō)明存在總有一個(gè)鴿籠至少有2只鴿子飛進(jìn)一個(gè)個(gè)籠里。
師:同意嗎?(生:同意)老師把這位同學(xué)說(shuō)的算式寫(xiě)下來(lái),(板書(shū):54=11)
師:同位之間再說(shuō)一說(shuō),對這種方法的理解。
師:現在誰(shuí)能說(shuō)說(shuō)你對總有一個(gè)鴿籠里至少飛進(jìn)2只鴿子的理解
生:我們發(fā)現這是必然存在的一個(gè)現象,不管鴿子怎樣飛回鴿籠,一定會(huì )有一個(gè)鴿籠里至少有2只鴿子。
師:同學(xué)們都有這個(gè)發(fā)現嗎?
生眾:發(fā)現了。
師:同學(xué)們非常了不起,善于運用觀(guān)察、分析、思考、推理、證明的方法研究問(wèn)題,得出結論。同學(xué)們的.思維也在不知不覺(jué)中提升了許多,那么讓我們再來(lái)看這樣一組問(wèn)題。
(二)教學(xué)例2
1.出示題目:把5本書(shū)放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書(shū)?
把7本書(shū)放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書(shū)?
把9本書(shū)放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書(shū)?
(留給學(xué)生思考的空間,師巡視了解各種情況)
2.學(xué)生匯報。
生1:把5本書(shū)放進(jìn)2個(gè)抽屜里,如果每個(gè)抽屜里先放2本,還剩1本,這本書(shū)不管放到哪個(gè)抽屜里,總有一個(gè)抽屜里至少有3本書(shū)。
板書(shū):5本 2個(gè) 2本 余1本 (總有一個(gè)抽屜里至有3本書(shū))
7本 2個(gè) 3本 余1本(總有一個(gè)抽屜里至有4本書(shū))
9本 2個(gè) 4本 余1本(總有一個(gè)抽屜里至有5本書(shū))
師:2本、3本、4本是怎么得到的?生答完成除法算式。
52=2本1本(商加1)
72=3本1本(商加1)
92=4本1本(商加1)
師:觀(guān)察板書(shū)你能發(fā)現什么?
生1:總有一個(gè)抽屜里的至少有2本只要用 商+ 1就可以得到。
師:如果把5本書(shū)放進(jìn)3個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書(shū)?
生:總有一個(gè)抽屜里的至少有3本只要用53=1本2本,用商+ 2就可以了。
生:不同意!先把5本書(shū)平均分放到3個(gè)抽屜里,每個(gè)抽屜里先放1本,還剩2本,這2本書(shū)再平均分,不管分到哪兩個(gè)抽屜里,總有一個(gè)抽屜里至少有2本書(shū),不是3本書(shū)。
師:到底是商+1還是商+余數呢?誰(shuí)的結論對呢?在小組里進(jìn)行研究、討論。
交流、說(shuō)理活動(dòng):
生1:我們組通過(guò)討論并且實(shí)際分了分,結論是總有一個(gè)抽屜里至少有2本書(shū),不是3本書(shū)。
生2:把5本書(shū)平均分放到3個(gè)抽屜里,每個(gè)抽屜里先放1本,余下的2本可以在2個(gè)抽屜里再各放1本,結論是總有一個(gè)抽屜里至少有2本書(shū)。
生3∶我們組的結論是5本書(shū)平均分放到3個(gè)抽屜里,總有一個(gè)抽屜里至少有2本書(shū)用商加1就可以了,不是商加2。
師:現在大家都明白了吧?那么怎樣才能夠確定總有一個(gè)抽屜里至少有幾個(gè)物體呢?
生4:如果書(shū)的本數是奇數,用書(shū)的本數除以抽屜數,再用所得的商加1,就會(huì )發(fā)現總有一個(gè)抽屜里至少有商加1本書(shū)了。
師:同學(xué)們同意吧?
師:同學(xué)們的這一發(fā)現,稱(chēng)為抽屜原理, 抽屜原理又稱(chēng)鴿籠原理,最先是由19世紀的德國數學(xué)家狄利克雷提出來(lái)的,所以又稱(chēng)狄里克雷原理,也稱(chēng)為鴿巢原理。這一原理在解決實(shí)際問(wèn)題中有著(zhù)廣泛的應用。抽屜原理的應用是千變萬(wàn)化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結果。下面我們應用這一原理解決問(wèn)題。
3.解決問(wèn)題。71頁(yè)第3題。(獨立完成,交流反饋)
小結:經(jīng)過(guò)剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡(jiǎn)單的思維過(guò)程,我們獲得了解決這類(lèi)問(wèn)題的好辦法,下面讓我們輕松一下做個(gè)小游戲。
【點(diǎn)評】在這一環(huán)節的教學(xué)中教師抓住了假設法最核心的思路就是用有余數除法 形式表示出來(lái),使學(xué)生學(xué)生借助直觀(guān),很好的理解了如果把書(shū)盡量多地平均分給各個(gè)抽屜里,看每個(gè)抽屜里能分到多少本書(shū),余下的書(shū)不管放到哪個(gè)抽屜里,總有一個(gè)抽屜里比平均分得的書(shū)的本數多1本。特別是對某個(gè)抽屜至少有書(shū)的本數是除法算式中的商加1, 而不是商加余數,教師適時(shí)挑出針對性問(wèn)題進(jìn)行交流、討論,使學(xué)生從本質(zhì)上理解了抽屜原理。
三、應用原理解決問(wèn)題
師:我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請五位同學(xué)每人任意抽1張,聽(tīng)清要求,不要讓別人看到你抽的是什么牌。請大家猜測一下,同種花色的至少有幾張?為什么?
生:2張/因為54=11
師:先驗證一下你們的猜測:舉牌驗證。
師:如有3張同花色的,符合你們的猜測嗎?
師:如果9個(gè)人每一個(gè)人抽一張呢?
生:至少有3張牌是同一花色,因為94=21
四、全課小結
【點(diǎn)評】當學(xué)生利用有余數除法解決了具體問(wèn)題后,教師引導學(xué)生總結歸納這一類(lèi)抽屜問(wèn)題的一般規律,使學(xué)生進(jìn)一步理解掌握了抽屜原理。
【六年級數學(xué)《抽屜原理》教學(xué)設計】相關(guān)文章:
《抽屜原理》教學(xué)設計04-15
抽屜原理教學(xué)設計12-14
抽屜原理教學(xué)設計02-01
《抽屜原理》教學(xué)設計02-22
抽屜原理教學(xué)設計03-28
抽屜原理優(yōu)秀教學(xué)設計03-05
《抽屜原理》教學(xué)設計優(yōu)秀【經(jīng)典】02-10
《抽屜原理》教學(xué)設計最新04-11
(精品)抽屜原理教學(xué)設計10-26