初中數學(xué)知識點(diǎn)總結

時(shí)間:2022-11-28 09:17:00 觀(guān)民 總結范文 我要投稿

新人教版初中數學(xué)知識點(diǎn)總結

  總結是事后對某一階段的學(xué)習、工作或其完成情況加以回顧和分析的一種書(shū)面材料,寫(xiě)總結有利于我們學(xué)習和工作能力的提高,不如立即行動(dòng)起來(lái)寫(xiě)一份總結吧?偨Y怎么寫(xiě)才不會(huì )流于形式呢?下面是小編精心整理的新人教版初中數學(xué)知識點(diǎn)總結,希望對大家有所幫助。

新人教版初中數學(xué)知識點(diǎn)總結

  初中數學(xué)知識點(diǎn)總結 篇1

  1.圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形;同圓或等圓的半徑相等。

  2.到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓。

  3.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。

  4.圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合。

  5.圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合;圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。

  6.不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  7.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。

  推論1:

 、倨椒窒(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧;

 、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧;

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。

  推論2:

  圓的兩條平行弦所夾的弧相等。

  8.推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。

  9.定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角。

  10.經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心。

  11.切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)。

  12.切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑。

  13.經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)

  14.切線(xiàn)長(cháng)定理從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的'切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角。

  15.圓的外切四邊形的兩組對邊的和相等外角等于內對角。

  16.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上。

  17.

 、賰蓤A外離d>R+r

 、趦蓤A外切d=R+r

 、蹆蓤A相交d>R-r)

 、軆蓤A內切d=R-r(R>r)

 、輧蓤A內含d=r)

  18.定理把圓分成n(n≥3):

 、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形

 、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形。

  19.定理任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓。

  20.弧長(cháng)計算公式:L=n兀R/180;扇形面積公式:S扇形=n兀R^2/360=LR/2。

  21.內公切線(xiàn)長(cháng)= d-(R-r)外公切線(xiàn)長(cháng)= d-(R+r)。

  22.定理一條弧所對的圓周角等于它所對的圓心角的一半。

  23.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

  24.推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

  初中數學(xué)知識點(diǎn)總結 篇2

  一、數與代數

  a、數與式:

  1、有理數:

 、僬麛怠麛/0/負整數

 、诜謹怠謹/負分數

  數軸:

 、佼(huà)一條水平直線(xiàn),在直線(xiàn)上取一點(diǎn)表示0(原點(diǎn)),選取某一長(cháng)度作為單位長(cháng)度,規定直線(xiàn)上向右的方向為正方向,就得到數軸。

 、谌魏我粋(gè)有理數都可以用數軸上的一個(gè)點(diǎn)來(lái)表示。

 、廴绻麅蓚(gè)數只有符號不同,那么我們稱(chēng)其中一個(gè)數為另外一個(gè)數的相反數,也稱(chēng)這兩個(gè)數互為相反數。在數軸上,表示互為相反數的兩個(gè)點(diǎn),位于原點(diǎn)的兩側,并且與原點(diǎn)距離相等。

 、軘递S上兩個(gè)點(diǎn)表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。

  絕對值:

 、僭跀递S上,一個(gè)數所對應的點(diǎn)與原點(diǎn)的距離叫做該數的絕對值。

 、谡龜档慕^對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個(gè)負數比較大小,絕對值大的反而小。

  有理數的運算:加法:

 、偻栂嗉,取相同的符號,把絕對值相加。

 、诋愄栂嗉,絕對值相等時(shí)和為0;絕對值不等時(shí),取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。

 、垡粋(gè)數與0相加不變。

  減法:減去一個(gè)數,等于加上這個(gè)數的相反數。

  乘法:

 、賰蓴迪喑,同號得正,異號得負,絕對值相乘。

 、谌魏螖蹬c0相乘得0。

 、鄢朔e為1的兩個(gè)有理數互為倒數。

  除法:

 、俪砸粋(gè)數等于乘以一個(gè)數的倒數。

 、0不能作除數。

  乘方:求n個(gè)相同因數a的積的運算叫做乘方,乘方的結果叫冪,a叫底數,n叫次數。

  混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

  2、實(shí)數 無(wú)理數:無(wú)限不循環(huán)小數叫無(wú)理數

  平方根:

 、偃绻粋(gè)正數x的平方等于a,那么這個(gè)正數x就叫做a的算術(shù)平方根。

 、谌绻粋(gè)數x的平方等于a,那么這個(gè)數x就叫做a的平方根。

 、垡粋(gè)正數有2個(gè)平方根/0的平方根為0/負數沒(méi)有平方根。

 、芮笠粋(gè)數a的平方根運算,叫做開(kāi)平方,其中a叫做被開(kāi)方數。

  立方根:

 、偃绻粋(gè)數x的立方等于a,那么這個(gè)數x就叫做a的立方根。

 、谡龜档牧⒎礁钦龜、0的立方根是0、負數的立方根是負數。

 、矍笠粋(gè)數a的立方根的運算叫開(kāi)立方,其中a叫做被開(kāi)方數。

  實(shí)數:

 、賹(shí)數分有理數和無(wú)理數。

 、谠趯(shí)數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。

 、勖恳粋(gè)實(shí)數都可以在數軸上的一個(gè)點(diǎn)來(lái)表示。

  3、代數式

  代數式:?jiǎn)为氁粋(gè)數或者一個(gè)字母也是代數式。

  合并同類(lèi)項:

 、偎帜赶嗤,并且相同字母的指數也相同的項,叫做同類(lèi)項。

 、诎淹(lèi)項合并成一項就叫做合并同類(lèi)項。

 、墼诤喜⑼(lèi)項時(shí),我們把同類(lèi)項的系數相加,字母和字母的指數不變。

  4、整式與分式

  整式:

 、贁蹬c字母的乘積的代數式叫單項式,幾個(gè)單項式的和叫多項式,單項式和多項式統稱(chēng)整式。

 、谝粋(gè)單項式中,所有字母的指數和叫做這個(gè)單項式的次數。

 、垡粋(gè)多項式中,次數最高的項的次數叫做這個(gè)多項式的次數。

  整式運算:加減運算時(shí),如果遇到括號先去括號,再合并同類(lèi)項。

  冪的運算:am+an=a(m+n)

  (am)n=amn

  (a/b)n=an/bn 除法一樣。

  整式的乘法:

 、賳雾検脚c單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。

 、趩雾検脚c多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的.積相加。

 、鄱囗検脚c多項式相乘,先用一個(gè)多項式的每一項乘另外一個(gè)多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式/完全平方公式

  整式的除法:

 、賳雾検较喑,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個(gè)因式。

 、诙囗検匠詥雾検,先把這個(gè)多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個(gè)多項式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項式分解因式。

  方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:

 、僬絘除以整式b,如果除式b中含有分母,那么這個(gè)就是分式,對于任何一個(gè)分式,分母不為0。

 、诜质降姆肿优c分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。

  初中數學(xué)知識點(diǎn):直線(xiàn)的位置與常數的關(guān)系

 、賙>0則直線(xiàn)的傾斜角為銳角

 、趉<0則直線(xiàn)的傾斜角為鈍角

 、蹐D像越陡,|k|越大

 、躡>0直線(xiàn)與y軸的交點(diǎn)在x軸的上方

 、輇<0直線(xiàn)與y軸的交點(diǎn)在x軸的下方

  初中數學(xué)知識點(diǎn)總結 篇3

  一、函數及其相關(guān)概念

  1、變量與常量

  在某一變化過(guò)程中,可以取不同數值的量叫做變量,數值保持不變的量叫做常量。

  一般地,在某一變化過(guò)程中有兩個(gè)變量x與y,如果對于x的每一個(gè)值,y都有確定的值與它對應,那么就說(shuō)x是自變量,y是x的函數。

  2、函數解析式

  用來(lái)表示函數關(guān)系的數學(xué)式子叫做函數解析式或函數關(guān)系式。

  使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。

  3、函數的三種表示法及其優(yōu)缺點(diǎn)

  (1)解析法

  兩個(gè)變量間的函數關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數字運算符號的等式表示,這種表示法叫做解析法。

  (2)列表法

  把自變量x的一系列值和函數y的對應值列成一個(gè)表來(lái)表示函數關(guān)系,這種表示法叫做列表法。

  (3)圖像法

  用圖像表示函數關(guān)系的方法叫做圖像法。

  4、由函數解析式畫(huà)其圖像的一般步驟

  (1)列表:列表給出自變量與函數的一些對應值

  (2)描點(diǎn):以表中每對對應值為坐標,在坐標平面內描出相應的點(diǎn)

  (3)連線(xiàn):按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線(xiàn)連接起來(lái)。

  二、相交線(xiàn)與平行線(xiàn)

  1、知識網(wǎng)絡(luò )結構

  2、知識要點(diǎn)

 。1)在同一平面內,兩條直線(xiàn)的位置關(guān)系有兩種:相交和平行,垂直是相交的一種特殊情況。

 。2)在同一平面內,不相交的兩條直線(xiàn)叫平行線(xiàn)。如果兩條直線(xiàn)只有一個(gè)公共點(diǎn),稱(chēng)這兩條直線(xiàn)相交;如果兩條直線(xiàn)沒(méi)有公共點(diǎn),稱(chēng)這兩條直線(xiàn)平行。

 。3)兩條直線(xiàn)相交所構成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是

  鄰補角。鄰補角的`性質(zhì):鄰補角互補。如圖1所示,與互為鄰補角,

  與互為鄰補角。+=180°;+=180°;+=180°;+=180°。

  3、兩條直線(xiàn)相交所構成的四個(gè)角中,一個(gè)角的兩邊分別是另一個(gè)角的兩邊的反向延長(cháng)線(xiàn),這樣的兩個(gè)角互為對頂角。對頂角的性質(zhì):對頂角相等。如圖1所示,與互為對頂角。=; =。

  4、兩條直線(xiàn)相交所成的角中,如果有一個(gè)是直角或90°時(shí),稱(chēng)這兩條直線(xiàn)互相垂直,

  其中一條叫做另一條的垂線(xiàn)。如圖2所示,當=90°時(shí),⊥。

  垂線(xiàn)的性質(zhì):

  性質(zhì)1:過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直。

  性質(zhì)2:連接直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)的所有線(xiàn)段中,垂線(xiàn)段最短。

  性質(zhì)3:如圖2所示,當a⊥b時(shí),====90°。

  點(diǎn)到直線(xiàn)的距離:直線(xiàn)外一點(diǎn)到這條直線(xiàn)的垂線(xiàn)段的長(cháng)度叫點(diǎn)到直線(xiàn)的距離。

  5、同位角、內錯角、同旁?xún)冉腔咎卣鳎?/p>

  在兩條直線(xiàn)(被截線(xiàn))的同一方,都在第三條直線(xiàn)(截線(xiàn))的同一側,這樣的兩個(gè)角叫同位角。圖3中,共有對同位角:與是同位角;與是同位角;與是同位角;與是同位角。

  在兩條直線(xiàn)(被截線(xiàn))之間,并且在第三條直線(xiàn)(截線(xiàn))的兩側,這樣的兩個(gè)角叫內錯角。圖3中,共有對內錯角:與是內錯角;與是內錯角。

  在兩條直線(xiàn)(被截線(xiàn))的之間,都在第三條直線(xiàn)(截線(xiàn))的同一旁,這樣的兩個(gè)角叫同旁?xún)冉。圖3中,共有對同旁?xún)冉牵号c是同旁?xún)冉?與是同旁?xún)冉恰?/p>

  三、實(shí)數

  1、實(shí)數的分類(lèi)

 。1)按定義分類(lèi):

 。2)按性質(zhì)符號分類(lèi):

  注:0既不是正數也不是負數.

  2、實(shí)數的相關(guān)概念

 。1)相反數

 、俅鷶狄饬x:只有符號不同的兩個(gè)數,我們說(shuō)其中一個(gè)是另一個(gè)的相反數.0的相反數是0.

 、趲缀我饬x:在數軸上原點(diǎn)的兩側,與原點(diǎn)距離相等的兩個(gè)點(diǎn)表示的兩個(gè)數互為相反數,或數軸上,互為相反數的兩個(gè)數所對應的點(diǎn)關(guān)于原點(diǎn)對稱(chēng).

 、刍橄喾磾档膬蓚(gè)數之和等于0.a、b互為相反數a+b=0.

 。2)絕對值|a|≥0.

 。3)倒數(1)0沒(méi)有倒數(2)乘積是1的兩個(gè)數互為倒數.a、b互為倒數.

 。4)平方根

 、偃绻粋(gè)數的平方等于a,這個(gè)數就叫做a的平方根.一個(gè)正數有兩個(gè)平方根,它們互為相反數;0有一個(gè)平方根,它是0本身;負數沒(méi)有平方根.a(a≥0)的平方根記作.

 、谝粋(gè)正數a的正的平方根,叫做a的算術(shù)平方根.a(a≥0)的算術(shù)平方根記作.

 。5)立方根

  如果x3=a,那么x叫做a的立方根.一個(gè)正數有一個(gè)正的立方根;一個(gè)負數有一個(gè)負的立方根;零的立方根是零.

  3、實(shí)數與數軸

  數軸定義:規定了原點(diǎn),正方向和單位長(cháng)度的直線(xiàn)叫做數軸,數軸的三要素缺一不可.

  4、實(shí)數大小的比較

 。1)對于數軸上的任意兩個(gè)點(diǎn),靠右邊的點(diǎn)所表示的數較大.

 。2)正數都大于0,負數都小于0,兩個(gè)正數,絕對值較大的那個(gè)正數大;兩個(gè)負數;絕對值大的反而小.

 。3)無(wú)理數的比較大。

  初中數學(xué)知識點(diǎn)總結 篇4

  初中數學(xué)知識點(diǎn)總結:中位線(xiàn)

  知識要點(diǎn):梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半。

  1.中位線(xiàn)概念

  (1)三角形中位線(xiàn)定義:連接三角形兩邊中點(diǎn)的線(xiàn)段叫做三角形的中位線(xiàn)。

  (2)梯形中位線(xiàn)定義:連結梯形兩腰中點(diǎn)的線(xiàn)段叫做梯形的中位線(xiàn)。

  注意:

  (1)要把三角形的中位線(xiàn)與三角形的中線(xiàn)區分開(kāi)。三角形中線(xiàn)是連結一頂點(diǎn)和它對邊的中點(diǎn),而三角形中位線(xiàn)是連結三角形兩邊中點(diǎn)的線(xiàn)段。

  (2)梯形的中位線(xiàn)是連結兩腰中點(diǎn)的線(xiàn)段而不是連結兩底中點(diǎn)的線(xiàn)段。

  (3)兩個(gè)中位線(xiàn)定義間的聯(lián)系:可以把三角形看成是上底為零時(shí)的梯形,這時(shí)梯形的中位線(xiàn)就變成三角形的中位線(xiàn)。

  2.中位線(xiàn)定理

  (1)三角形中位線(xiàn)定理:三角形的中位線(xiàn)平行于第三邊并且等于它的一半.

  三角形兩邊中點(diǎn)的連線(xiàn)(中位線(xiàn))平行于第BC邊,且等于第三邊的一半。

  知識要領(lǐng)總結:三角形的中位線(xiàn)所構成的小三角形(中點(diǎn)三角形)面積是原三角形面積的四分之一。

  初中數學(xué)知識點(diǎn)總結:平面直角坐標系

  下面是對平面直角坐標系的內容學(xué)習,希望同學(xué)們很好的掌握下面的內容。

  平面直角坐標系

  平面直角坐標系:在平面內畫(huà)兩條互相垂直、原點(diǎn)重合的數軸,組成平面直角坐標系。

  水平的數軸稱(chēng)為x軸或橫軸,豎直的數軸稱(chēng)為y軸或縱軸,兩坐標軸的交點(diǎn)為平面直角坐標系的原點(diǎn)。

  平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點(diǎn)重合

  三個(gè)規定:

 、僬较虻囊幎M軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L(cháng)度的規定;一般情況,橫軸、縱軸單位長(cháng)度相同;實(shí)際有時(shí)也可不同,但同一數軸上必須相同。

 、巯笙薜囊幎ǎ河疑蠟榈谝幌笙、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標系知識的講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數學(xué)知識點(diǎn):平面直角坐標系的構成

  對于平面直角坐標系的構成內容,下面我們一起來(lái)學(xué)習哦。

  平面直角坐標系的構成

  在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數軸構成平面直角坐標系,簡(jiǎn)稱(chēng)為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱(chēng)為坐標軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標系的原點(diǎn)。

  通過(guò)上面對平面直角坐標系的構成知識的講解學(xué)習,希望同學(xué)們對上面的內容都能很好的掌握,同學(xué)們認真學(xué)習吧。

  初中數學(xué)知識點(diǎn):點(diǎn)的坐標的性質(zhì)

  下面是對數學(xué)中點(diǎn)的坐標的性質(zhì)知識學(xué)習,同學(xué)們認真看看哦。

  點(diǎn)的坐標的性質(zhì)

  建立了平面直角坐標系后,對于坐標系平面內的任何一點(diǎn),我們可以確定它的坐標。反過(guò)來(lái),對于任何一個(gè)坐標,我們可以在坐標平面內確定它所表示的一個(gè)點(diǎn)。

  對于平面內任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線(xiàn),垂足在X軸、Y軸上的對應點(diǎn)a,b分別叫做點(diǎn)C的橫坐標、縱坐標,有序實(shí)數對(a,b)叫做點(diǎn)C的坐標。

  一個(gè)點(diǎn)在不同的象限或坐標軸上,點(diǎn)的坐標不一樣。

  希望上面對點(diǎn)的坐標的性質(zhì)知識講解學(xué)習,同學(xué)們都能很好的掌握,相信同學(xué)們會(huì )在考試中取得優(yōu)異成績(jì)的。

  初中數學(xué)知識點(diǎn):因式分解的.一般步驟

  關(guān)于數學(xué)中因式分解的一般步驟內容學(xué)習,我們做下面的知識講解。

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒(méi)有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

  通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個(gè)整式的積的形式。

  相信上面對因式分解的一般步驟知識的內容講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì )考出好成績(jì)。

  初中數學(xué)知識點(diǎn):因式分解

  下面是對數學(xué)中因式分解內容的知識講解,希望同學(xué)們認真學(xué)習。

  因式分解

  因式分解定義

  把一個(gè)多項式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項式因式分解。

  因式分解要素

 、俳Y果必須是整式

 、诮Y果必須是積的形式

 、劢Y果是等式

 、芤蚴椒纸馀c整式乘法的關(guān)系:m(a+b+c)

  公因式:一個(gè)多項式每項都含有的公共的因式,叫做這個(gè)多項式各項的公因式。

  公因式確定方法

 、傧禂凳钦麛禃r(shí)取各項最大公約數。

 、谙嗤帜溉∽畹痛蝺

 、巯禂底畲蠊s數與相同字母取最低次冪的積就是這個(gè)多項式各項的公因式。

  提取公因式步驟:

 、俅_定公因式。②確定商式③公因式與商式寫(xiě)成積的形式。

  分解因式注意;

 、俨粶蕘G字母

 、诓粶蕘G常數項注意查項數

 、垭p重括號化成單括號

 、芙Y果按數單字母單項式多項式順序排列

 、菹嗤蚴綄(xiě)成冪的形式

 、奘醉椮撎柗爬ㄌ柾

 、呃ㄌ杻韧(lèi)項合并。

  通過(guò)上面對因式分解內容知識的講解學(xué)習,相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內容給同學(xué)們的學(xué)習很好的幫助。

  初中數學(xué)知識點(diǎn)總結 篇5

  動(dòng)點(diǎn)與函數圖象問(wèn)題常見(jiàn)的四種類(lèi)型:

  1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象.

  2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象.

  3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象.

  4、直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象.

  圖形運動(dòng)與函數圖象問(wèn)題常見(jiàn)的三種類(lèi)型:

  1、線(xiàn)段與多邊形的運動(dòng)圖形問(wèn)題:把一條線(xiàn)段沿一定方向運動(dòng)經(jīng)過(guò)三角形或四邊形,根據問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數圖象.

  2、多邊形與多邊形的運動(dòng)圖形問(wèn)題:把一個(gè)三角形或四邊形沿一定方向運動(dòng)經(jīng)過(guò)另一個(gè)多邊形,根據問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數圖象.

  3、多邊形與圓的運動(dòng)圖形問(wèn)題:把一個(gè)圓沿一定方向運動(dòng)經(jīng)過(guò)一個(gè)三角形或四邊形,或把一個(gè)三角形或四邊形沿一定方向運動(dòng)經(jīng)過(guò)一個(gè)圓,根據問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數圖象.

  動(dòng)點(diǎn)問(wèn)題常見(jiàn)的四種類(lèi)型:

  1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運動(dòng),通過(guò)全等或相似,探究構成的新圖形與原圖形的邊或角的關(guān)系.

  2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運動(dòng),通過(guò)探究構成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.

  3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運動(dòng),探究構成的新圖形的邊角等關(guān)系.

  4、直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)運動(dòng),探究是否存在動(dòng)點(diǎn)構成的三角形是等腰三角形或與已知圖形相似等問(wèn)題.

  總結反思:

  本題是二次函數的綜合題,考查了待定系數法求二次函數的解析式,一次函數的'解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線(xiàn)的性質(zhì)等,數形結合思想的應用是解題的關(guān)鍵.

  解答動(dòng)態(tài)性問(wèn)題通常是對幾何圖形運動(dòng)過(guò)程有一個(gè)完整、清晰的認識,發(fā)掘“動(dòng)”與“靜”的內在聯(lián)系,尋求變化規律,從變中求不變,從而達到解題目的.

  解答函數的圖象問(wèn)題一般遵循的步驟:

  1、根據自變量的取值范圍對函數進(jìn)行分段.

  2、求出每段的解析式.

  3、由每段的解析式確定每段圖象的形狀.

  對于用圖象描述分段函數的實(shí)際問(wèn)題,要抓住以下幾點(diǎn):

  1、自變量變化而函數值不變化的圖象用水平線(xiàn)段表示.

  2、自變量變化函數值也變化的增減變化情況.

  3、函數圖象的最低點(diǎn)和最高點(diǎn).

  初中數學(xué)知識點(diǎn)總結 篇6

  相關(guān)的角:

  1、對頂角:一個(gè)角的兩邊分別是另一個(gè)角的兩邊的`反向延長(cháng)線(xiàn),這兩個(gè)角叫做對頂角。

  2、互為補角:如果兩個(gè)角的和是一個(gè)平角,這兩個(gè)角做互為補角。

  3、互為余角:如果兩個(gè)角的和是一個(gè)直角,這兩個(gè)角叫做互為余角。

  4、鄰補角:有公共頂點(diǎn),一條公共邊,另兩條邊互為反向延長(cháng)線(xiàn)的兩個(gè)角做互為鄰補角。

  注意:互余、互補是指兩個(gè)角的數量關(guān)系,與兩個(gè)角的位置無(wú)關(guān),而互為鄰補角則要求兩個(gè)角有特殊的位置關(guān)系。

  角的性質(zhì)

  1、對頂角相等。

  2、同角或等角的余角相等。

  3、同角或等角的補角相等。

  初中數學(xué)知識點(diǎn)總結 篇7

  第二章整式的加減

  2、1整式

  1、單項式:由數字和字母乘積組成的式子。系數,單項式的次數、單項式指的是數或字母的積的代數式、單獨一個(gè)數或一個(gè)字母也是單項式、因此,判斷代數式是否是單項式,關(guān)鍵要看代數式中數與字母是否是乘積關(guān)系,即分母中不含有字母,若式子中含有加、減運算關(guān)系,其也不是單項式、

  2、單項式的系數:是指單項式中的數字因數;

  3、單項數的次數:是指單項式中所有字母的指數的和、

  4、多項式:幾個(gè)單項式的和。判斷代數式是否是多項式,關(guān)鍵要看代數式中的每一項是否是單項式、每個(gè)單項式稱(chēng)項,常數項,多項式的次數就是多項式中次數的次數。多項式的次數是指多項式里次數項的次數,這里是次數項,其次數是6;多項式的項是指在多項式中,每一個(gè)單項式、特別注意多項式的項包括它前面的性質(zhì)符號、

  5、它們都是用字母表示數或列式表示數量關(guān)系。注意單項式和多項式的'每一項都包括它前面的符號。

  6、單項式和多項式統稱(chēng)為整式。

  2、2整式的加減

  1、同類(lèi)項:所含字母相同,并且相同字母的指數也相同的項。與字母前面的系數(≠0)無(wú)關(guān)。

  2、同類(lèi)項必須同時(shí)滿(mǎn)足兩個(gè)條件:

 。1)所含字母相同;

 。2)相同字母的次數相同,二者缺一不可、同類(lèi)項與系數大小、字母的排列順序無(wú)關(guān)

  3、合并同類(lèi)項:把多項式中的同類(lèi)項合并成一項?梢赃\用交換律,結合律和分配律。

  4、合并同類(lèi)項法則:合并同類(lèi)項后,所得項的系數是合并前各同類(lèi)項的系數的和,且字母部分不變;

  5、去括號法則:去括號,看符號:是正號,不變號;是負號,全變號。

  6、整式加減的一般步驟:

  一去、二找、三合

 。1)如果遇到括號按去括號法則先去括號

 。2)結合同類(lèi)項

 。3)合并同類(lèi)項葫蘆島

  初中數學(xué)知識點(diǎn)總結 篇8

  一、角的定義

  “靜態(tài)”概念:有公共端點(diǎn)的兩條射線(xiàn)組成的圖形叫做角。

  “動(dòng)態(tài)”概念:角可以看作是一條射線(xiàn)繞其端點(diǎn)從一個(gè)位置旋轉到另一個(gè)位置所形成的圖形。

  如果一個(gè)角的兩邊成一條直線(xiàn),那么這個(gè)角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。

  二、角的換算:1周角=2平角=4直角=360°;

  1平角=2直角=180°;

  1直角=90°;

  1度=60分=3600秒(即:1°=60′=3600″);

  1分=60秒(即:1′=60″).

  三、余角、補角的概念和性質(zhì):

  概念:如果兩個(gè)角的和是一個(gè)平角,那么這兩個(gè)角叫做互為補角。

  如果兩個(gè)角的和是一個(gè)直角,那么這兩個(gè)角叫做互為余角。

  說(shuō)明:互補、互余是指兩個(gè)角的數量關(guān)系,沒(méi)有位置關(guān)系。

  性質(zhì):同角(或等角)的余角相等;

  同角(或等角)的補角相等。

  四、角的比較方法:

  角的大小比較,有兩種方法:

  (1)度量法(利用量角器);

  (2)疊合法(利用圓規和直尺)。

  五、角平分線(xiàn):從一個(gè)角的頂點(diǎn)引出的一條射線(xiàn)。把這個(gè)角分成相等的兩部分,這條射線(xiàn)叫做這個(gè)角的`平分線(xiàn)。

  常見(jiàn)考法

  (1)考查與時(shí)鐘有關(guān)的問(wèn)題;(2)角的計算與度量。

  誤區提醒

  角的度、分、秒單位的換算是60進(jìn)制,而不是10進(jìn)制,換算時(shí)易受10進(jìn)制影響而出錯。

  【典型例題】(20xx云南曲靖)從3時(shí)到6時(shí),鐘表的時(shí)針旋轉角的度數是( )

  【答案】3時(shí)到6時(shí),時(shí)針旋轉的是一個(gè)周角的1/4,故是90度 ,本題選C.

  初中數學(xué)知識點(diǎn)總結 篇9

  一元一次方程定義

  通過(guò)化簡(jiǎn),只含有一個(gè)未知數,且含有未知數的最高次項的次數是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b為常數,且a≠0)。一元一次方程屬于整式方程,即方程兩邊都是整式。

  一元指方程僅含有一個(gè)未知數,一次指未知數的次數為1,且未知數的系數不為0。我們將ax+b=0(其中x是未知數,a、b是已知數,并且a≠0)叫一元一次方程的標準形式。這里a是未知數的系數,b是常數,x的次數必須是1。

  即一元一次方程必須同時(shí)滿(mǎn)足4個(gè)條件:⑴它是等式;⑵分母中不含有未知數;⑶未知數最高次項為1;⑷含未知數的項的系數不為0。

  一元一次方程的五個(gè)核心問(wèn)題

  一、什么是等式?1+1=1是等式嗎?

  表示相等關(guān)系的式子叫做等式,等式可分三類(lèi):第一類(lèi)是恒等式,就是用任何允許的數值代替等式中的.字母,等式的兩邊總是相等,由數字組成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二類(lèi)是條件等式,也就是方程,這類(lèi)等式只能取某些數值代替等式中的字母時(shí),等式才成立,如x+y=-5,x+4=7等都是條件等式;第三類(lèi)是矛盾等式,就是無(wú)論用任何值代替等式中的字母,等式總不成立,如x2=-2,|a|+5=0等。

  一個(gè)等式中,如果等號多于一個(gè),叫做連等式,連等式可以化為一組只含有一個(gè)等號的等式。

  等式與代數式不同,等式中含有等號,代數式中不含等號。

  等式有兩個(gè)重要性質(zhì)1)等式的兩邊都加上或減去同一個(gè)數或同一個(gè)整式,所得結果仍然是一個(gè)等式;(2)等式的兩邊都乘以或除以同一個(gè)數除數不為零,所得結果仍然是一個(gè)等式。

  二、什么是方程,什么是一元一次方程?

  含有未知數的等式叫做方程,如2x-3=8,x+y=7等。判斷一個(gè)式子是否是方程,只需看兩點(diǎn):一是不是等式;二是否含有未知數,兩者缺一不可。

  只含有一個(gè)未知數,并且含未知數的式子都是整式,未知數的次數是1,系數不是0的方程叫做一元一次方程。其標準形式是ax+b=0(a不為0,a,b是已知數),值得注意的是1)一個(gè)整式方程的"元"和"次"是將這個(gè)方程化成最簡(jiǎn)形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化簡(jiǎn)后,它實(shí)際上是一個(gè)一元一次方程。(2)整式方程分母中不含有未知數。判斷是否為整式方程,是不能先將它化簡(jiǎn)的如方程x+1/x=2+1/x,因為它的分母中含有未知數x,所以,它不是整式方程。如果將上面的方程進(jìn)行化簡(jiǎn),則為x=2,這時(shí)再去作判斷,將得到錯誤的結論。

  凡是談到次數的方程,都是指整式方程,即方程的兩邊都是整式。一元一次方程是整式方程中元數最少且次數最低的方程。

  三、等式有什么牛掰的基本性質(zhì)嗎?

  將方程中的某些項改變符號后,從方程的一邊移到另一邊的變形叫做移項,移項的依據是等式的基本性質(zhì)1。

  移項時(shí)不一定要把含未知數的項移到等式的左邊。如解方程3x-2=4x-5時(shí)就可以把含未知數的項移到右邊,而把常數項移到左邊,這樣會(huì )顯得簡(jiǎn)便些。

  去分母,將未知數的系數化為1,則是依據等式的基本性質(zhì)2進(jìn)行的。

  四、等式一定是方程嗎?方程一定是等式嗎?

  等式與方程有很多相同之處。如都是用等號連接的,等號左、右兩邊都是代數式,但它們還是有區別的。方程僅是含有未知數的等式,是等式中的特例。就是說(shuō),等式包含方程;反過(guò)來(lái),方程并不包含所有的等式。如,13+5=18,18-13=5都屬于等式,但它們并不是方程。因此,等式一定是方程的說(shuō)法是不對的。

  五、"解方程"與"方程的解"是一回事兒?jiǎn)?

  方程的解是使方程左、右兩邊相等的未知數的取值。而解方程是求方程的解或判斷方程無(wú)解的過(guò)程。即方程的解是結果,而解方程是一個(gè)過(guò)程。方程的解中的"解"是名詞,而解方程中的"解"是動(dòng)詞,二者不能混淆。

  初中數學(xué)知識點(diǎn)總結 篇10

  一、圓

  1、圓的有關(guān)性質(zhì)

  在一個(gè)平面內,線(xiàn)段OA繞它固定的一個(gè)端點(diǎn)O旋轉一周,另一個(gè)端點(diǎn)A隨之旋轉所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線(xiàn)段OA叫半徑。

  由圓的意義可知:

  圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長(cháng)的點(diǎn)都在圓上。

  就是說(shuō):圓是到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合,圓的內部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。

  圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結圓上任意兩點(diǎn)的`線(xiàn)段叫做弦,經(jīng)過(guò)圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡(jiǎn)稱(chēng)弧。

  圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu);小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。

  圓心相同,半徑不相等的兩個(gè)圓叫同心圓。

  能夠重合的兩個(gè)圓叫等圓。

  同圓或等圓的半徑相等。

  在同圓或等圓中,能夠互相重合的弧叫等弧。

  二、過(guò)三點(diǎn)的圓

  l、過(guò)三點(diǎn)的圓

  過(guò)三點(diǎn)的圓的作法:利用中垂線(xiàn)找圓心

  定理不在同一直線(xiàn)上的三個(gè)點(diǎn)確定一個(gè)圓。

  經(jīng)過(guò)三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內接三角形。

  2、反證法

  反證法的三個(gè)步驟:

 、偌僭O命題的結論不成立;

 、趶倪@個(gè)假設出發(fā),經(jīng)過(guò)推理論證,得出矛盾;

 、塾擅艿贸黾僭O不正確,從而肯定命題的結論正確。

  例如:求證三角形中最多只有一個(gè)角是鈍角。

  證明:設有兩個(gè)以上是鈍角

  則兩個(gè)鈍角之和>180°

  與三角形內角和等于180°矛盾。

  ∴不可能有二個(gè)以上是鈍角。

  即最多只能有一個(gè)是鈍角。

  三、垂直于弦的直徑

  圓是軸對稱(chēng)圖形,經(jīng)過(guò)圓心的每一條直線(xiàn)都是它的對稱(chēng)軸。

  垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

  推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。

  弦的垂直平分線(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧。

  平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個(gè)條弧。

  推理2:圓兩條平行弦所夾的弧相等。

  四、圓心角、弧、弦、弦心距之間的關(guān)系

  圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形。

  實(shí)際上,圓繞圓心旋轉任意一個(gè)角度,都能夠與原來(lái)的圖形重合。

  頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

  定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。

  推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應的其余各組量都分別相等。

  五、圓周角

  頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。

  推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

  推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

  推理3:如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形。

  由于以上的定理、推理,所添加輔助線(xiàn)往往是添加能構成直徑上的圓周角的輔助線(xiàn)。

  初中數學(xué)知識點(diǎn)總結 篇11

  一、平移變換:

  1。概念:在平面內,將一個(gè)圖形沿著(zhù)某個(gè)方向移動(dòng)一定的距離,這樣的圖形運動(dòng)叫做平移。

  2。性質(zhì):(1)平移前后圖形全等;

 。2)對應點(diǎn)連線(xiàn)平行或在同一直線(xiàn)上且相等。

  3。平移的作圖步驟和方法:

 。1)分清題目要求,確定平移的方向和平移的距離;

 。2)分析所作的圖形,找出構成圖形的關(guān)健點(diǎn);

 。3)沿一定的方向,按一定的距離平移各個(gè)關(guān)健點(diǎn);

 。4)連接所作的各個(gè)關(guān)鍵點(diǎn),并標上相應的字母;

 。5)寫(xiě)出結論。

  二、旋轉變換:

  1。概念:在平面內,將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉動(dòng)一個(gè)角度,這樣的圖形運動(dòng)叫做旋轉。

  說(shuō)明:

 。1)圖形的旋轉是由旋轉中心和旋轉的角度所決定的;

 。2)旋轉過(guò)程中旋轉中心始終保持不動(dòng)。

 。3)旋轉過(guò)程中旋轉的方向是相同的。

 。4)旋轉過(guò)程靜止時(shí),圖形上一個(gè)點(diǎn)的旋轉角度是一樣的。⑤旋轉不改變圖形的.大小和形狀。

  2。性質(zhì):

 。1)對應點(diǎn)到旋轉中心的距離相等;

 。2)對應點(diǎn)與旋轉中心所連線(xiàn)段的夾角等于旋轉角;

 。3)旋轉前、后的圖形全等。

  3。旋轉作圖的步驟和方法:

 。1)確定旋轉中心及旋轉方向、旋轉角;

 。2)找出圖形的關(guān)鍵點(diǎn);

 。3)將圖形的關(guān)鍵點(diǎn)和旋轉中心連接起來(lái),然后按旋轉方向分別將它們旋轉一個(gè)旋轉角度數,得到這些關(guān)鍵點(diǎn)的對應點(diǎn);

 。4)按原圖形順次連接這些對應點(diǎn),所得到的圖形就是旋轉后的圖形。

  說(shuō)明:在旋轉作圖時(shí),一對對應點(diǎn)與旋轉中心的夾角即為旋轉角。

  常見(jiàn)考法

 。1)把平移旋轉結合起來(lái)證明三角形全等;

 。2)利用平移變換與旋轉變換的性質(zhì),設計一些題目。

  誤區提醒

 。1)弄反了坐標平移的上加下減,左減右加的規律;

 。2)平移與旋轉的性質(zhì)沒(méi)有掌握。

  初中數學(xué)知識點(diǎn)總結 篇12

  誘導公式的本質(zhì)

  所謂三角函數誘導公式,就是將角n(/2)的三角函數轉化為角的三角函數。

  常用的誘導公式

  公式一: 設為任意角,終邊相同的角的同一三角函數的值相等:

  sin(2k)=sin kz

  cos(2k)=cos kz

  tan(2k)=tan kz

  cot(2k)=cot kz

  公式二: 設為任意角,的三角函數值與的三角函數值之間的'關(guān)系:

  sin()=-sin

  cos()=-cos

  tan()=tan

  cot()=cot

  公式三: 任意角與 -的三角函數值之間的關(guān)系:

  sin(-)=-sin

  cos(-)=cos

  tan(-)=-tan

  cot(-)=-cot

  公式四: 利用公式二和公式三可以得到與的三角函數值之間的關(guān)系:

  sin()=sin

  cos()=-cos

  tan()=-tan

  cot()=-cot

  初中數學(xué)知識點(diǎn)總結 篇13

  1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。

  2、菱形的性質(zhì):⑴矩形具有平行四邊形的一切性質(zhì);

 、屏庑蔚乃臈l邊都相等;

 、橇庑蔚膬蓷l對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角。

 、攘庑问禽S對稱(chēng)圖形。

  提示:利用菱形的性質(zhì)可證得線(xiàn)段相等、角相等,它的對角線(xiàn)互相垂直且把菱形分成四個(gè)全等的直角三角形,由此又可與勾股定理聯(lián)系,可得對角線(xiàn)與邊之間的關(guān)系,即邊長(cháng)的平方等于對角線(xiàn)一半的平方和。

  3、因式分解定義:把一個(gè)多項式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項式因式分解。

  4、因式分解要素:

 、俳Y果必須是整式

 、诮Y果必須是積的形式

 、劢Y果是等式

 、芤蚴椒纸馀c整式乘法的關(guān)系:m(a+b+c)

  5、公因式:一個(gè)多項式每項都含有的公共的因式,叫做這個(gè)多項式各項的公因式。

  6、公因式確定方法:

 、傧禂凳钦麛禃r(shí)取各項最大公約數。

 、谙嗤帜溉∽畹痛蝺

 、巯禂底畲蠊s數與相同字母取最低次冪的積就是這個(gè)多項式各項的公因式。

  7、提取公因式步驟:

 、俅_定公因式。

 、诖_定商式

 、酃蚴脚c商式寫(xiě)成積的'形式。

  8、平方根表示法:一個(gè)非負數a的平方根記作,讀作正負根號a。a叫被開(kāi)方數。

  9、中被開(kāi)方數的取值范圍:被開(kāi)方數a≥0

  10、平方根性質(zhì):

 、僖粋(gè)正數的平方根有兩個(gè),它們互為相反數。

 、0的平方根是它本身0。

 、圬摂禌](méi)有平方根開(kāi)平方;求一個(gè)數的平方根的運算,叫做開(kāi)平方。

  11、平方根與算術(shù)平方根區別:定義不同、表示方法不同、個(gè)數不同、取值范圍不同。

  12、聯(lián)系:二者之間存在著(zhù)從屬關(guān)系;存在條件相同;0的算術(shù)平方根與平方根都是0

  13、含根號式子的意義:表示a的平方根,表示a的算術(shù)平方根,表示a的負的平方根。

  14、求正數a的算術(shù)平方根的方法;

  完全平方數類(lèi)型:

 、傧胝l(shuí)的平方是數a。

 、谒詀的平方根是多少。

 、塾檬阶颖硎。

  求正數a的算術(shù)平方根,只需找出平方后等于a的正數。

  初中數學(xué)知識點(diǎn)總結 篇14

  1、重心的定義:平面圖形中,幾何圖形的重心是當支撐或懸掛時(shí)圖形能在水平面處于平衡狀態(tài),此時(shí)的支撐點(diǎn)或者懸掛點(diǎn)叫做平衡點(diǎn),也叫做重心。

  2、幾種幾何圖形的重心:

 、 線(xiàn)段的重心就是線(xiàn)段的中點(diǎn);

 、 平行四邊形及特殊平行四邊形的重心是它的兩條對角線(xiàn)的交點(diǎn);

 、 三角形的三條中線(xiàn)交于一點(diǎn),這一點(diǎn)就是三角形的重心;

 、 任意多邊形都有重心,以多邊形的任意兩個(gè)頂點(diǎn)作為懸掛點(diǎn),把多邊形懸掛時(shí),過(guò)這兩點(diǎn)鉛垂線(xiàn)的交點(diǎn)就是這個(gè)多邊形的重心。

  提示:⑴ 無(wú)論幾何圖形的形狀如何,重心都有且只有一個(gè);

 、 從物理學(xué)角度看,幾何圖形在懸掛或支撐時(shí),位于重心兩邊的`力矩相同。

  3、常見(jiàn)圖形重心的性質(zhì):

 、 線(xiàn)段的重心把線(xiàn)段分為兩等份;

 、 平行四邊形的重心把對角線(xiàn)分為兩等份;

 、 三角形的重心把中線(xiàn)分為1:2兩部分(重心到頂點(diǎn)距離占2份,重心到對邊中點(diǎn)距離占1份)。

  上面對重心知識點(diǎn)的鞏固學(xué)習,同學(xué)們都能熟練的掌握了吧,希望同學(xué)們很好的復習學(xué)習數學(xué)知識。

  初中數學(xué)知識點(diǎn)總結 篇15

  1.有理數:

 。1)凡能寫(xiě)成形式的數,都是有理數。正整數、0、負整數統稱(chēng)整數;正分數、負分數統稱(chēng)分數;整數和分數統稱(chēng)有理數。注意:0即不是正數,也不是負數;—a不一定是負數,+a也不一定是正數;p不是有理數;

 。2)有理數的分類(lèi):① ②

  2.數軸:數軸是規定了原點(diǎn)、正方向、單位長(cháng)度的一條直線(xiàn)。

  3.相反數:

 。1)只有符號不同的兩個(gè)數,我們說(shuō)其中一個(gè)是另一個(gè)的相反數;0的相反數還是0;

 。2)相反數的和為0?a+b=0?a、b互為相反數。

  4.絕對值:

 。1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點(diǎn)離開(kāi)原點(diǎn)的距離;

 。2)絕對值可表示為:或;絕對值的問(wèn)題經(jīng)常分類(lèi)討論;

  5.有理數比大。

 。1)正數的絕對值越大,這個(gè)數越大;

 。2)正數永遠比0大,負數永遠比0;

 。3)正數大于一切負數;

 。4)兩個(gè)負數比大小,絕對值大的反而;

 。5)數軸上的兩個(gè)數,右邊的數總比左邊的數大;

 。6)大數—小數> 0,小數—大數< 0。

  6.互為倒數:乘積為1的兩個(gè)數互為倒數;注意:0沒(méi)有倒數;若a≠0,那么的倒數是;若ab=1?a、b互為倒數;若ab=—1?a、b互為負倒數。

  7.有理數加法法則:

 。1)同號兩數相加,取相同的符號,并把絕對值相加;

 。2)異號兩數相加,取絕對值較大的'符號,并用較大的絕對值減去較小的絕對值;

 。3)一個(gè)數與0相加,仍得這個(gè)數。

  8.有理數加法的運算律:

 。1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c)。

  9.有理數減法法則:減去一個(gè)數,等于加上這個(gè)數的相反數;即a—b=a+(—b)。

  10.有理數乘法法則:

 。1)兩數相乘,同號為正,異號為負,并把絕對值相乘;

 。2)任何數同零相乘都得零;

 。3)幾個(gè)數相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號由負因式的個(gè)數決定。

  11.有理數乘法的運算律:

 。1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

 。3)乘法的分配律:a(b+c)=ab+ac 。

  12.有理數除法法則:除以一個(gè)數等于乘以這個(gè)數的倒數;注意:零不能做除數,。

  13.有理數乘方的法則:

 。1)正數的任何次冪都是正數;

 。2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時(shí):(—a)n=—an或(a —b)n=—(b—a)n,當n為正偶數時(shí):(—a)n =an或(a—b)n=(b—a)n 。

  14.乘方的定義:

 。1)求相同因式積的運算,叫做乘方;

 。2)乘方中,相同的因式叫做底數,相同因式的個(gè)數叫做指數,乘方的結果叫做冪;

  15.科學(xué)記數法:把一個(gè)大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學(xué)記數法。

  16.近似數的精確位:一個(gè)近似數,四舍五入到那一位,就說(shuō)這個(gè)近似數的精確到那一位。

  17.有效數字:從左邊第一個(gè)不為零的數字起,到精確的位數止,所有數字,都叫這個(gè)近似數的有效數字。

  18.混合運算法則:先乘方,后乘除,最后加減。

  本章內容要求學(xué)生正確認識有理數的概念,在實(shí)際生活和學(xué)習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點(diǎn)利用有理數的運算法則解決實(shí)際問(wèn)題。

  體驗數學(xué)發(fā)展的一個(gè)重要原因是生活實(shí)際的需要。激發(fā)學(xué)生學(xué)習數學(xué)的興趣,教師培養學(xué)生的觀(guān)察、歸納與概括的能力,使學(xué)生建立正確的數感和解決實(shí)際問(wèn)題的能力。教師在講授本章內容時(shí),應該多創(chuàng )設情境,充分體現學(xué)生學(xué)習的主體性地位。

  初中數學(xué)知識點(diǎn)總結 篇16

  直線(xiàn)、射線(xiàn)、線(xiàn)段

 。1)直線(xiàn)、射線(xiàn)、線(xiàn)段的表示方法

 、僦本(xiàn):用一個(gè)小寫(xiě)字母表示,如:直線(xiàn)l,或用兩個(gè)大寫(xiě)字母(直線(xiàn)上的)表示,如直線(xiàn)AB。

 、谏渚(xiàn):是直線(xiàn)的一部分,用一個(gè)小寫(xiě)字母表示,如:射線(xiàn)l;用兩個(gè)大寫(xiě)字母表示,端點(diǎn)在前,如:射線(xiàn)OA。注意:用兩個(gè)字母表示時(shí),端點(diǎn)的字母放在前邊。

 、劬(xiàn)段:線(xiàn)段是直線(xiàn)的一部分,用一個(gè)小寫(xiě)字母表示,如線(xiàn)段a;用兩個(gè)表示端點(diǎn)的字母表示,如:線(xiàn)段AB(或線(xiàn)段BA)。

 。2)點(diǎn)與直線(xiàn)的位置關(guān)系:

 、冱c(diǎn)經(jīng)過(guò)直線(xiàn),說(shuō)明點(diǎn)在直線(xiàn)上;

 、邳c(diǎn)不經(jīng)過(guò)直線(xiàn),說(shuō)明點(diǎn)在直線(xiàn)外。

  兩點(diǎn)間的.距離

 。1)兩點(diǎn)間的距離:連接兩點(diǎn)間的線(xiàn)段的長(cháng)度叫兩點(diǎn)間的距離。

 。2)平面上任意兩點(diǎn)間都有一定距離,它指的是連接這兩點(diǎn)的線(xiàn)段的長(cháng)度,學(xué)習此概念時(shí),注意強調最后的兩個(gè)字“長(cháng)度”,也就是說(shuō),它是一個(gè)量,有大小,區別于線(xiàn)段,線(xiàn)段是圖形。線(xiàn)段的長(cháng)度才是兩點(diǎn)的距離?梢哉f(shuō)畫(huà)線(xiàn)段,但不能說(shuō)畫(huà)距離。

  正方體

 。1)對于此類(lèi)問(wèn)題一般方法是用紙按圖的樣子折疊后可以解決,或是在對展開(kāi)圖理解的基礎上直接想象。

 。2)從實(shí)物出發(fā),結合具體的問(wèn)題,辨析幾何體的展開(kāi)圖,通過(guò)結合立體圖形與平面圖形的轉化,建立空間觀(guān)念,是解決此類(lèi)問(wèn)題的關(guān)鍵。

 。3)正方體的展開(kāi)圖有11種情況,分析平面展開(kāi)圖的各種情況后再認真確定哪兩個(gè)面的對面。

  初中數學(xué)知識點(diǎn)總結 篇17

  一、一次函數圖象 y=kx+b

  一次函數的圖象可以由k、b的正負來(lái)決定:

  k大于零是一撇(由左下至右上,增函數)

  k小于零是一捺(由右上至左下,減函數)

  b等于零必過(guò)原點(diǎn);

  b大于零交點(diǎn)(指圖象與y軸的交點(diǎn))在上方(指x軸上方)

  b小于零交點(diǎn)(指圖象與y軸的交點(diǎn))在下方(指x軸下方)

  其圖象經(jīng)過(guò)(0,b) 和 (-b/k , 0) 這兩點(diǎn)(兩點(diǎn)就可以決定一條直線(xiàn)),且(0,b) 在 y軸上, (-b/k , 0) 在x軸上。

  b的數值就是一次函數在y軸上的截距(不是距離,有正、負、零之分)。

  二、不等式組的.解集

  1、步驟:去分母(后分子應加上括號)、去括號、移項、合并同類(lèi)項、系數化為1 。

  2、解一元一次不等式組時(shí),先求出各個(gè)不等式的解集,然后按不等式組解集的四種類(lèi)型所反映的規律,寫(xiě)出不等式組的解集:不等式組解集的確定方法,若a

  A 的解集是 解集 小小的取小

  B 的解集是 解集 大大的取大

  C 的解集是 解集 大小的 小大的取中間

  D 的解集是空集 解集 大大的 小小的無(wú)解

  另需注意等于的問(wèn)題。

  初中數學(xué)知識點(diǎn)總結 篇18

  圓周角知識點(diǎn)

  1、定義:頂點(diǎn)在圓上,角的兩邊都與圓相交的角。(兩條件缺一不可)

  2、定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半。

  3、推論:1)在同圓或等圓中,相等的圓周角所對的弧相等。

  2)直徑(半圓)所對的圓周角是直角;900的圓周角所對的弦為直徑。(①常見(jiàn)輔助線(xiàn):有直徑可構成直角,有900圓周角可構成直徑;②找圓心的方法:作兩個(gè)900圓周角所對兩弦交點(diǎn))

  4、圓內接四邊形的性質(zhì)定理:圓內接四邊形的對角互補。(任意一個(gè)外角等于它的內對角)

  補充:1、兩條平行弦所夾的弧相等。

  2、圓的兩條弦1)在圓外相交時(shí),所夾角等于它所對的兩條弧度數差的一半。2)在圓內相交時(shí),所夾的`角等于它所夾兩條弧度數和的一半。

  3、同弧所對的(在弧的同側)圓內部角其次是圓周角,最小的是圓外角。

  平均數中位數與眾數知識點(diǎn)

  1.數據13,10,12,8,7的平均數是10.

  2.數據3,4,2,4,4的眾數是4.

  3.數據1,2,3,4,5的中位數是3.

  有理數知識點(diǎn)

  1.大于0的數叫做正數。

  2.在正數前面加上負號“-”的數叫做負數。

  3.整數和分數統稱(chēng)為有理數。

  4.人們通常用一條直線(xiàn)上的點(diǎn)表示數,這條直線(xiàn)叫做數軸。

  5.在直線(xiàn)上任取一個(gè)點(diǎn)表示數0,這個(gè)點(diǎn)叫做原點(diǎn)。

  6.一般的,數軸上表示數a的點(diǎn)與原點(diǎn)的距離叫做數a的絕對值。

  7.由絕對值的定義可知:

  一個(gè)正數的絕對值是它本身;

  一個(gè)負數的絕對值是它的相反數;

  0的絕對值是0。

  8.正數大于0,0大于負數,正數大于負數。

  9.兩個(gè)負數,絕對值大的反而小。

  10.有理數加法法則:

  (1)同號兩數相加,取相同的符號,并把絕對值相加。

  (2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,并用較大的絕對值減去較小的絕對值,互為相反數的兩個(gè)數相加得0。

  (3)一個(gè)數同0相加,仍得這個(gè)數。

  11.有理數的加法中,兩個(gè)數相加,交換交換加數的位置,和不變。

  12.有理數的加法中,三個(gè)數相加,先把前兩個(gè)數相加,或者先把后兩個(gè)數相加,和不變。

  13.有理數減法法則:減去一個(gè)數,等于加上這個(gè)數的相反數。

  14.有理數乘法法則:兩數相乘,同號得正,異號得負,并把絕對值向乘。任何數同0相乘,都得0。

  15.有理數中仍然有:乘積是1的兩個(gè)數互為倒數。

  16.一般的,有理數乘法中,兩個(gè)數相乘,交換因數的位置,積相等。

  17.三個(gè)數相乘,先把前兩個(gè)數相乘,或者先把后兩個(gè)數相乘,積相等。

  18.一般地,一個(gè)數同兩個(gè)數的和相乘,等于把這個(gè)數分別同這兩個(gè)數相乘,再把積相加。

  19.有理數除法法則:除以一個(gè)不等于0的數,等于乘這個(gè)數的倒數。

  20.兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個(gè)不等于0的數,都得0。

【初中數學(xué)知識點(diǎn)總結】相關(guān)文章:

初中數學(xué)的知識點(diǎn)總結12-12

初中數學(xué)極差知識點(diǎn)總結07-19

初中數學(xué)圓知識點(diǎn)總結04-30

初中數學(xué)知識點(diǎn)總結07-14

人教版初中數學(xué)知識點(diǎn)總結07-21

初中數學(xué)所有函數的知識點(diǎn)總結11-22

初中數學(xué)幾何知識點(diǎn)總結范文12-13

初中數學(xué)知識點(diǎn)總結優(yōu)秀02-24

初中數學(xué)知識點(diǎn)點(diǎn)和面的知識點(diǎn)總結04-23

有關(guān)初中數學(xué)圓的知識點(diǎn)總結歸納04-20

99久久精品免费看国产一区二区三区|baoyu135国产精品t|40分钟97精品国产最大网站|久久综合丝袜日本网|欧美videosdesexo肥婆